SURFACE SAE JA1003 MAY2012

aar . VEHICLE/
SAE International AEROSPACE e ned oou o

RECOMMENDED Superseding JA1003 JAN2004
PRACTICE

Software Reliability Program Implementation Guide

RATIONALE

JA1003 has been reaffirmed to comply with the SAE five-year review policy.

Foreword

In 1994, the SAE (i-11 Reliability, Maintainability, Supportability and Logistics (RMSL)-Division chartgred
a software commitfee, G-11SW, to create several software standards and guidanéeydocuments acfoss
the RMSL spectrum, including a software reliability program standard and implementation guidelipes.
The committee wa$ formed as a cross section of international representatives from commercial indusiries
and governments.

The G-11SW committee has developed a standard (JA1002) and{thése implementation guideljnes
(JA1003) that are |consistent with a SAE G-11 system level reliability program standard (JA1000) [and
guidelines (JA100Q-1), augmented by necessary software-specifichinformation. The G-11SW commijttee
believes these dodquments reflect the best current commercial-practices, and meet the objectives of the
United States Department of Defense Acquisition Reform“initiative and the North Atlantic Trpaty
Organization (NATO) Reliability Program. The JA1002-program standard is intended to be used by
industries to addrgss market demands for reliable software products that improve system productiyvity,
time to market, and cost-effective implementation{) The JA1003 guidelines address possible fask
activities, method$ and techniques through which JA1002 can be implemented. As appropriate,
governments and gqther organizations may also-reference these documents.

Software has been recognized by SAE_G-11 as an important system component that is not adequately
addressed at the dystem level. Software requires interpretation and variations on RMSL methods ysed
by hardware. In particular, the distinction between hardware and software methods may be difficylt to
define with such products as pregrammable logic devices and Field Programmable Gate Arrays. [This
document provideg a selectionf methods and techniques to implement the simple concept of supglier-
customer-certification authority dialogue and partnership to define, meet, and demonstrate assurande of
software product reliability requirements. JA1003 describes how to structure a Plan in terms of activifies,
tasks, and methodls.so~as to achieve the requirements of JA1002 and provide demonstrated (Jase
evidence of reliabillty-achievement.

Development of these guidelines has required dedication by a few participants and extended review by a
wider audience of potential users over an extended period of time. The professionalism of all these
individuals and the support they received from their companies, governments, and other organizations is
gratefully acknowledged.

SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is
entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”

SAE reviews each technical report at least every five years at which time it may be revised, reaffirmed, stabilized, or cancelled. SAE invites your written comments and

suggestions.

Copyright © 2012 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying,

recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada) SAE values your input. To provide feedback
Tel: +1724-776-4970 (outside USA) on this Technical Report, please visit

Fax: 724-776-0790) !
Email: CustomerService@sae.org http://www.sae.org/technical/standards/JA1003 201205

SAE WEB ADDRESS: http://iwww.sae.org

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 2 of 176

Abstract

This document defines practices for the implementation of a reliability program for software within an
overall systems engineering framework. Guidelines for implementation of a Software Reliability Plan and
associated Software Reliability Case are presented. Practices are described for establishing a software
reliability program through selection of life cycle activities tailored for the application. Numerous analysis,
design, and verification methods and techniques that might be selected to achieve the life cycle activities
are summarized and references provided. Guidelines for tailoring a software reliability program include
safety and security concerns, integration of Off-The-Shelf software, and collection of appropriate data.
The gmdelmes are apphcable to aII prolects mcorporatmg software, pamcularly high consequence

systems w

that acquire

4 3.1
432
433

51

5141
51.2
513
52

5.21
522
523
524
525
526

6.1
6.1.1

develop or provide post dellvery operation of or support for soﬂware

TABLE OF CONTENTS
Yoo o -SSR OTRRUPSRUSRROS PaNSOUPRRN
PUIMDOSE ...y D M et
AUTIENCE ... N P
F Y o] o] o= 1 (o] =P ST
BackgroUnd ..o S N
Roadmap to Document GUIdancCe.............ccccooovvveeeecn N,
RETEIENCES ..o e et et aae s
Applicable Publicationsc.cccccceevveiieeeie e S e
SAE PUDIICATIONS o et ae s

TEIMNS oo TR ettt
Life Cycle Management 557 e srnnee e
Program Management ... o e
Technical ACHIVITIES. ... 200 ettt
Roles and Responsibilities............ooooiiiiiiii e
010 E (o] 1 1= T U SO RRPPURRP
SUPPIEHCONIIAGION ... et aa e
Certification/Acceptance AULROTILYcooiiiiii e
Task ACHIVIHES ... e
ReliabilityAhalysis Tasks..........ooooi e
Determine Customer Requirementsc.coooeeeiii e
Meet Customer ReqUIremMENtSooooiiiiiiiiicce e
Demonstrate Customer Requirementscooiiieiie e

Dnl abilitv; (Caca MNaa o antatiss

u.au\..u.nlu_y A= S A A | g L 1 L TR Y

System Context Descriplion..........cccoiiii e
Goals, Objectives, and Requirements ...,

Assumptions and Claims

o [T o Tot T
Conclusions/Recommendationsovvviiiiiiiiiiiieeeeeeee e
Certification RECOIIS........ooviiiiiiieeeeee et
Special ConsSIderationsScoovviiviiii e
Tailoring the Software Reliability Program...........cccccoiiiiii e,
Application Variations and CompleXity..........ccccooeeiiiiiiie e

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 3 of 176

6.1.2 CritICAlITY LEVEIS ..oooiiiii e s 48
6.1.3 TeChNIQUE SEIECHION.ot e 50
6.1.4 DOCUMENTATION ... ettt et 51
6.2 Safety and Security ConsiderationS. ..o s 52
6.2.1 Safety ConSIAEratioNS e 53
6.2.2 Security CONSIAEIatioNS ... e e 55
6.3 Off-the-Shelf Software and REUSE ... 58
6.3.1 LS8 0] oo g S 1o L= 60
6.3.2 Used in New or Modified SYSIEMScccveviiiie e 60
6.3.3 DUMING IN-SBIVICE ... eiieei et r e e e st e e e s e s see e e s s s e e e e s reaaneenreeeeaanns 61
6.3.4 DOCUMENTATIONce ittt n e 61
6.4 Data Collection-and Repositones —————rrrrrrrrrrrrrrrrrmmmrrrererrrrrmrrrrmrrmrreemre e 62
6.4.1 Organizational Responsibilities...............cccooiii e e 62
6.4.2 Data ColleCtion ..o eseeee Kb e 62
6.4.3 Measurement and MetriCs ... e e 63
6.4.4 Failure Incident Report FOFMcccooiiiiiieeee e e e 64
6.4.5 Data RepOoSItOries.......ccccvvviiieieeiiiiie e e e 64
Appendix A | Relationship to Existing Standards and Guidelines..................CO e o 68
Appendix B| Example Plan and Case Outlinescccoiiiiiiiicecie e e 70
B.1 Software Reliability Plan Thematic Qutline.................cccc. 6. N e 70
B.2 Software Reliability Case Thematic Outline................... S e 71
Appendix C| Task Activities, Methods, and Techniquesex % e, 73
CA Analysis Techniquesccocoeeeeeiniieee Y e e, 76
CA1 Change impact analySiS........cccccco i S e eee e e 76
ci1.z2 Common Cause Failure Analysis..........c.oooo 80 e | e 77
C13 Defect Removal Efficiencycccooviiii o™i 77
C14 Design of Experiment (DOE) ... e e 79
C15 Formal Scenerio ANAIYSIS ...t e 81
c.1.6 Goal, Question, Metric (GQM)o0 e e 82
C1.7 Hazard Analysis ... i b 83
c.1.8 Pareto ANAlYSISoooooii e e 85
c1.9 Probabilistic Methods ... e | 86
C.1.10 PUGN SEIECHON ... 7 e esnn e e s eee e | ernre e 88
C.1.11 Quality Function Deployment (QFD).......cccooioiiiiiiie e [89
ci.12 Reliability AlIoCatiON"..........cccoiiiiiiiiii e e e e e eee e o eese e 90
C.1.13 Reliability Block IDiagramsccoovviiiiiiiieni e sseee s eeees s e 92
C1.14 Reliability Prediction Modelingoooocviivi e eeeen e 94
C.1.15 Response(Time, Memory, Constraint ANalysis..........cccooocviieeeeeeeiiiieeeeeeeeeeeee e 96
C.1.16 SIX SIGIMA ..o et e e e e e rrane e e e e e aseeranaeaaesennnns|eeeee e 97
C1.17 SnEaK CircUit ANAIYSIS ..o e 98
C.1.18 Software Failure Modes, Effects, and Criticality Analysis (SFMECA) |l 98
C1.19 L_Software Fault Tree Analysis(SETA) e 100
C.1.20 Software Reliability Engineering (SRE-MUSA)ccccoo oot 102
C.1.21 Statistical ANAIYSIS ... e e e 103
c2 Design TEChNIQUEScceeei ettt e e et e e s e e et aaeenraaaaes 105
c21 Design by CONFACT.........oo o e er e 105
caz2 Fault Tolerant DeSIgN.......ccooi et e e e eeenarae e 106
c23 Formal Methods/LanQUagesccccciiiiiiiiii ettt et e et e s ear e e 108
c24 Independence, Isolation, Inoperability, Incompatibility (14) ..., 109

c25 Mistake/Error Proofingoooo i 110

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 4 of 176

c.26 Pl N TS ettt 112
c27 Software INtegrity CheCks et 114
C3 Verfication TEChNIGUES ... e 116
C.3.1 Boundary Value ANAIYSISoiuiiiiiii ettt 116
C.3.2 ClBANFOOM ... e ettt et e e e et bbbt e e e e e s e eee e e e e 117
C.3.3 COVEIAGE ANAIYSIS ..o i e e e e e e e 118
C.34 Dynamic Test MethOds ... s nneee e 119
C35 Formal In-Process Reviews (Fagan Software Inspections)..........ccccccve v vvivnnviie s 123
C.3.6 Operational Profilecooiii e e 124
C.37 PEEI REVIBIWNS ...ttt 126
c.38 Reliability Bench Marking.......cccoovvieiii e e e e e e 127
C.3.9 —Reliability Estimation Modaling———————eereeeee e 128
C.310 ROOt Cause ANAIYSIS........cc.uvviieeeiiiiieeeeee e e D 130
C.3.11 Testability Analysis, Fault Inspection, Failure Assertion................ccccooee 5 b, 132
CA4 Management TeChNIQUESoooiiiiiiiiiie e e e 133
C.41 Configuration Management................cccoooeoiiiiieee b 133
cA4.2 Failure Reporting Analysis and Corrective Action System (FRACAS) /.............f......... 136
C.43 Life Cycle Process Standard.............cccooooeeeiiiiiiiiiiiiiieeeec e O e 138
C44 Process ASSESSIMENT.... ..o e e 140
C45 Requirements Management................o.ooooooi N e 144
C4.6 Risk Managementcoooccoiiii o S 147
Appendix D| Example: Software Reliability Engineering (SRE) ..~% .. 151
D.1 SRE Process ... A e 151
D.2 Fone Follower EXample ... S b, 151
D.2.1 List Associated Systemscoociviii N b 151
D22 Implement Operational Profiles..............ai @ e e 152
D.2.3 Define “Just Right” Reliability............coc e e db e 154
D24 Prepare fOr TESTo et esee e sene e re e aansnneaeeesnnne s s neeshoneaeennns 154
D.25 EXECULE TaST ..o 3 e 155
D.2.6 Guide Test. ..o e b 155
D.27 Collect Field Data.............c it 157
D.3 CONCIUSIONS ... ettt e e e ae e e e e e ssssnnsaee e s s s snnab e e e, 157
Appendix E| Example: Software Reliability Program Fragment...............ccccooooiiiniiiiice o b, 158
E.1 FAA and DO178B Background and Certification Elements............cc.c...ooo b 158
E.1A1 Level of FAA Involvement (LOFI)..........oooiiiiiiiieeeeeee e e 159
E1.2 Means of COMPLANCEccoiiiiiiii e ee e b e 160
E.2 Case Study-Background and Objectivescccccccooiiiiiiiiiccciieeeeeeeeee e 161
E3 Load Centrol Software Concept and Initial Assumptionsccoooeeviieien b, 163
E4 Determination of Level of FAA Involvementcccoiiiiiiiieie 164
E.5 USIAand IMA Inc Contract.............ooeiiiiiiieeeeecceeeeeeeeee e e 165
E.6 Case Study ReSURS..........cooi e b 165
E.6.1 Strategy ———————r e e 166
E.6.2 Reliability Evidence and MEetrCSiiiiiii e 169
E.6.3 Formal In-Process Review (Software Inspection) Evidence.................ooooeiiiiiiiiiicci, 170
E.6.4 System/Integrated Test EVIAENCEcovviii e 171
E.6.5 Computation of the Predicted and Estimated Reliability................cccceeviiieeiiinieees 172
E.6.6 FAA and NSIA Product Reviews and Development Transition to In-Service.................... 174

E.7 Case Study References and Supporting Bibliographyccccvvvviveiiiieeeeee 177

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 5 of 176

LIST OF ILLUSTRATIONS
Figure 1 System/Software Reliability Life Cycle Management ... 25
Figure 2 Customer-Supplier-Certification Relationship.............coii e 31
Figure 3 Software Reliability Program Plan-Case Framework ..o 33
Figure 4 Reliability Case: Claims Based on EVIENCe ... 42
Figure 5 Layered Approach to Software Reliability Tailoringcccoooo s 46
Figure 6 Reliability Confidence LIMItS ... e 50
Figure 7 Safety Plan, Case, and Policy MOEI ... 54
Figure 8 Example System/Software Safety Life Cycle ProCess.......cccccvvviveei v 55
Figure 9 Example Failure Incident Report FOIrM e 67
Figure C1 Example Pareto Chart of Software Problemscccviiiv e 85
Figure C2 Example Probabilistic Methods WOrk FIOW...........cccccviev e e 87
Figure C3 Example Serial Reliability Block Diagram Computationccccceevveeeee A0 93
Figure C4 Example Parallel Reliability Block Diagram Computation.............ccc..c..... B o 93
Figure C5 Reliability Block Diagram Model of HW/SW Computational Component...........J............. 94
Figure C6 Elements of a Software FMECAccoooiiiiiieee ey 99
Figure C7 Elements of a Software FTA ... N 101
Figure C8 Example Software Petri Net Diagram (Fragment) x5 113
Figure C9 Formal In-Process Reviews Across Life Cycle Activities..,..fr i o 123
Figure C10| Operational Profile Derivation...............c..cccooiiieeimine e e 125
Figure C11| Elements of a Software Configuration Management System ... 136
Figure C12| Elements of a System-Software FRACAS e)i 137
Figure C13| Example Integrated Life Cycle Management Systém................coocoeoo 139
Figure C14 | Example Software Process Improvement Cycle: ... 141
Figure C15| CMMI Structure and Classes of Assessment Methods ... o 143
Figure C16| Elements of a Requirements Management'Frameworkcccooveiiinnn o 145
Figure C17 | Example Risk Management Matrix Templateccccccoviieeviiinicic e o 148
Figure D1 SRE Process SIePs......cccveiieeee e e e 152
Figure D2 Plot of FI/FIO Ratio for Fone FOHOWETcccovvvviiecce e e, 156
Figure D3 Reliability Demonstration Chart-Applied to Fone Followerccoovvviiivvccci e, 157
Figure E1 Integrated Modular AvionicS{IMA) Hardware Elementocccevvvvicicccee e 161
Figure E2 Customer, Supplier, Cetification Roles............ccccoevcceeiiieeecne e o 162
Figure E3 Example USIA Customer and IMA Inc. Supplier Contract Outlineccocveeeee oo, 167
Figure E4 Example EvidengePlot of Defect Data by Life Cycle Activity............cccocooe 173
Figure E5 Example Evidence: Development Transitions to In-Service Support................. oo 176
Figure E6 Example Evidence: FRACAS Data Collection for a Sustained Reliability

Program@Uring IN-SerVICEooiiiiiiiiii et e 177
Table 1 Document Roadmap to Topics of Interest ... 9
Table 2 Example Defects and Removal Efficiency Profiles............ccccooooovviiieieccce o 27
Table 3 Example Defect Removal Efficiency, Delivered Defects for ApplicationsJ.............. 27
Table 4 Practices Associated with Reduced Defect Densitycccooooo o, 28
Table 5 Example Reliability Failure Measures by Application Type........cccoooiiiiiiiiieee 35
Table 6 Example Format for Summary of Software Reliability Case Evidence............cccccccooveeei. 44
Table 7 Example Software Reliability Criticality MatriX..................oiii e 49
Table 8 MaJOr SUFELY THEMIES ..ottt 53
Table 9 Security Principles and Associated Surety Themes ... 56
Table 10 Example Reliability Data for the AIAA RePOSIIOIYc.ccvvviicciiee e 66
Table A1 Characterization of Standards and Relationship to Software Reliabilityccccoveene. 69
Table C1 Techniques to Achieve and Assess Software Reliability by Life Cycle Phase.................... 74

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 6 of 176
Table C2 Defect Origin and Removal Efficiency MetriCs..........oovcvvveeiiieee e 78
Table C3 Defect Potential and Removal Efficiency by Quality Level...........cccooooiiiii, 78
Table C4 Defect Density Ranges by SEI CMM LeVel ... 78
Table C5 Common Software Reliability Estimation Modelsc..cccvv e 129
Table D1 Fone Follower Operational Profileccccooiiiieieiececce e 153
Table E1 I] s Yoo o N = o = S 159
Table E2 LOFI Catergories: High, Medium, LOW............ocoiiiiiiiei e 159
Table E3 DO178B Possible Deliverables............ccccoooiiiiiiiiie e 160
Table E4 Example Software Reliability Plan Compliance MatriX.............cccooovieiiiiiiciiieeeee 168
Table E5 Example Evidence: Formal INSpectionS..........ccccoiiiiii i 171
Table E6 Example Evidence: System/Integration Test Datacccccooeiiiiiiii e 171
Table E7 ExampteEvidence—tnspectonrs—esting Befect Bemeval Effistenrey—— ... 172
Table E8 Example Evidence: Predicted Reliability Galculations..................ooniiiml o 173
Table E9 Example Evidence: Estimated Reliability Calculationscooocoo L0 174
Table E10 Example Evidence: FAA and NSIA Product Reviews............cccooovvivee O N 175
1. Scopg
1.1 Purpoge
This documgnt provides methods and techniques for implementing a‘reliability program threughout the
full life cycle|of a software product, whether the product is considered as standalone or part gf a system.
This documgnt is the companion to the Software Reliability Prégram Standard [JA1002]. The Standard
describes th¢ requirements of a software reliability program to.define, meet, and demonstratg assurance
of software product reliability using a Plan-Case framework and implemented within the dontext of a
system appligation.

This documegnt has general applicability to all sectors of industry and commerce and to pll types of
equipment whose functionality is to some degreeimplemented by software components. |t is|lintended to
be guidance|for business purposes and should’be applied when it provides a value-added Hasis for the
business aspects of development, use, and sustainment of software whose reliability is ap important
performance|parameter. Applicability ef specific practices will depend on the reliability-signifigance of the
software, application domain, and life cycle stage of the software.

Following gujdelines in this document does not guarantee required reliability will be achieved|or that any
certification puthority will aceept the results as sufficient evidence that requisite reliability has been

achieved. F
achieved.
accordance

1.2 Audie

Vith propet<customer, certification authority, and supplier negotiation and in
vith these guidelines, it is more likely that the achieved reliability will be acceptabl

1ce

pllowing guidelines in this document will provide insight into what level of reliabilify has been

eraction in

al

=N

The target audience for this document includes customer organizations, certification authorities, specialty
reliability engineers, and software developers that acquire, develop, use, or provide post-delivery
operation of or support for software.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 7 of 176

1.3 Applications

The guidance in this document can be applied to all software-intensive projects, and in particular to
projects where the reliability of the software is critical to the performance of the system mission. System
applications include military, aerospace, transportation, medical, nuclear industries, ground vehicles, and
other consumer applications. Such systems may include the integration of custom software as well as
Off-The-Shelf (OTS) software. Custom software is generally newly developed software or a significant
rework/upgrade of existing software that is for use with a specific application. OTS software sources
include commercial vendors, government, and industry. The guidance in this document is generally
applicable throughout the complete life cycle, although specific approaches may be more effectively
applied at specific life cycle points depending on the software source, application, and pedigree.

1.4 BackJ;round

Software is @ major component of most important system applications. Because thesoftware

component

typically pro
Such syste
Thus, it is in
has been de

result in undesirable system failures.

The topic o
and/or mitig
and will not
failure-free
having a “n
convince cy

ides critical functions, faults in the software may cause the system to failin a sigpificant way.

m failures due to direct cause software faults are what we classify as “softwa
nportant to use methods and techniques that provide evidence that the software

re failures”.
component

signed, implemented, tested, installed, and, as necessary, updated without faulis that might

software reliability is concerned with all life cycle activities that prevent, detg
hte software faults, and that verify/validate the degre€ to which software faults
cause system failures. Software reliability is {quantitatively) defined as the p

TJperation of a software program for a specified-time under specified conditions|.

mber”, even with the appropriate accompanying evidence, is not generally
stomers, regulatory authorities, or even ‘the system/software suppliers that t

ct, remove,
do not exist
robability of
However,
sufficient to
ne software

satisfies its fequirements. Thus, software reliability>is also (qualitatively) defined as a set of aftributes that

bear on the
period of tin
engineering
security-criti
also provide|

capability of software to maintain its-level of performance under stated conditions for a stated
ne. Attributes that relate to implementation of fault tolerance design, use of Hest practice

practices, application of spegialized methods and techniques for ensuring s
cal requirements, and procedural methods to ensure mistake-proof loading and/
evidence that improves the’confidence that the software will not cause a system

There are si
primarily the
use-induced
documentat
result of p
deficiency,

hardware a

ilarities between hardware and software failures and also differences. Softwarg
result of design 'defects (during development or maintenance)}. Other failure sou

degradationas well as inadequate operational procedures and logistics
on that is considered part of the “software data package”. Hardware failures are
ysical Wwear out. Other failure sources include design defects, manufacty
r maiptenance or operating errors. Some system failures are the result of a co

ety- and/or
br operation
ailure.

failures are
rces include
operations
brimarily the
ring quality
mbination of

d-saftware faults. It is generally easier to |mplement changes to software than

o hardware,

dels continued

reliability anaIyS|s Hardware is generally repalred to an orlglnal state, unless there is a reason to modify

it.

enhanced, and adapted so as to become a new version, that is, a new product.

Software can frequently be returned to its original state by re-initializing, and often is corrected,

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 8 of 176

Both hardware and software must be managed as an integrated system. The reliability of the system will
depend on the reliability of the hardware and software as an integrated whole. Some techniques to
manage the system reliability will be similarly applied to hardware and software components whereas
other techniques will be unique to hardware or to software. In addition, the application of a given
technique may be different for software than for hardware.

There are no existing methods that guarantee delivered software has no faults. That is, there is always
some likelihood that under certain environmental conditions and system operational use, faults in
software will be encountered that result in failures of the system. In shont, software reliability is not "1.0".
There are existing methods and techniques that correlate with delivery of software with reduced
faults/failures. It is desirable to prowde sufficient quantitative and qualitative evidence that appropriate
developme I/or mitigate
possible soffware faults, particularly those faults that might result in critical system failures.

How might faults be prevented, detected, removed, and/or mitigated in the software-develop
support activities? What techniques might be used to provide quantitative or qualitative e

ment and/or
idence that

faults capaljle of causing a system failure do not exist in the software component? G iven limited

resources ahd time, which combination of techniques provides the “optimum® cost/benefit re
are decisions made to select such techniques and how is the evidence from the use of such
collected anfd presented? It is these concerns for which this document provides some guidg
for manageinent of a software reliability program and conduct of life cycle activities using
software engineering and reliability-specific techniques.

The referen
can support| pre-operational claims for reliability. "Particufarly when high levels of reliability
assured, it Will be necessary to use several sources of evidence to support reliability claims.
such disparate evidence to aid decision making is itself a difficult task and a topic of curren
Four areas ¢f evidence are discussed in terms of benefits and limitations:

sults? How
techniques
lines — both
appropriate

te by Littlewood [LITTLEWDOO] describes some of the challenges of providing eyidence that

need to be
Combining
t research."

1. evidence from software components and«&tructure;

2. evidence from static analysis of the'software product;

3. evidence from testing of software 'under operational conditions; and

4, evidence of process quality.

Among the challengest0-provide software reliability assurance, there are cultural issues i) addition to

hard technigal research’questions to be investigated.

The guidelin es. in this document recommend determining, meetlng and demonstratlng the 3

ssurance of

customer reg ;
system context usmg a plan -case management framework.

es within a

Itis the hope that these gmdellnes will be a

basis for promoting a systematic approach to the assurance of software reliability through direct attention
to the cultural issues of negotiation, implementation agreement, and human interface as well as to the
hard technical research necessary to demonstrate progress in understanding this complex area.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 9 of 176

1.5 Roadmap to Document Guidance

Each reader of this guide may have different interests. A quick roadmap summary of sections of this
guideline that might support reader interests is contained in Table 1.

TABLE 1—DOCUMENT ROADMAP TO TOPICS OF INTEREST

Topic/Question of Interest Document Section(s) to Read

What are software reliability management concerns across the | Section 4
life cycle?

What specific task activities are recommended for a software | Section 5
reliability p||ogram?

Where is tr{e content of a software reliability plan discussed? Section 5.1, Appendix B

Where is Ir{e content of a software reliability case discussed? | Section 5.2, Appéndix B

How do safety and/or security concerns relate to a software | Section 6.2
reliability ptrogram?

Where artt Off-The-Shelf and reused software reliability | Section6.3
concerns dpscribed?

What data should be collected as part of a software reliability [\Section 6.4
program?

Are there pny examples that might assist in understanding | Appendix D, Appendix E
software re’iability‘?

What analk/sis, design, and/or verification techniques are | Appendix C
available td support software reliability task activities?

What tailofjng guidance is provided for assoftware reliability | Section 6.1
program?

What othel standards and guidelines) exist in this area and | Appendix A
how does JA1003 relate to thesedocuments?

What refergnces might be useful to review? Section 2, Appendix C

Where is the software reliability terminology defined? Section 3

This guide i§ not intended to be a novel read from front to back. The life cycle management information
described in[Section*4 provides an overview of a software reliability program across the varigus life cycle
phases, incl Jdlng example methods/technlques that mlght support the program in each phas The task
activities dessc . 2 . ty program
standard [JA1002] reqwrements If the reader is mterested in conS|derat|ons for tallorlng a program,
addressing safety/security, integrating Off-The-Shelf software, or data collection then Section 6 would be
the place to find such information.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 10 of 176

The relationship of this software reliability guideline document to many existing standards and guidelines
documents is presented as a matrix in Appendix A. Software reliability plan and case outlines are
illustrated in Appendix B. If there is interest in a wide variety of potential methods and techniques, then
Appendix C would be the place to look. It is emphasized that there are humerous ways to combine and
integrate methods and techniques different from those described in Appendix C. There are undoubtedly
excellent methods and techniques that exist and are not included in this guide or that are developed after
publication of this guide. Numerous tools exist to support the methods and techniques, but this guide
does not specifically discuss any of those tools since their capabilities change so rapidly. Such tools can
be identified through the many references. Two case studies (at least fragments) are covered in
Appendix D and Appendix E. A fairly comprehensive glossary of acronyms and definitions is contained in
Section 3 and prlmary references from SAE, related standards and gwdelmes and publlcatlons of
interest are conta : a4 otherreis ces-are-contained in Appendix
C as part offeach specmc method/technlque

2. Refenences
2.1 Applicable Publications

The indicatg¢d references and web links were the current known version as,of the publication ¢f this guide.
See Appengix C for additional references specific to reliability methods and techniques.| There are
numerous other publications relevant to software reliability.

211 SA

ARP5580—Recommended Failure Modes and.Effects Analysis (FMEA) Practices for Nor-Automobile
Applicalions

J1739—Potential Failure Mode and Effects\Analysis in Design (Design FMEA) and Potgntial Failure
Mode apd Effects Analysis in Manufacturing and Assembly Processes (Process FMEA) and Effects
Analysis for Machinery (Machinery-EMEA)

JA1000—Rgliability Program Standard

JA1000-1—Reliability Program Implementation Guide

JA1002—Software Reliability Program Standard

JA1004—Software Supportability Program Standard

JA1005—Software Suppertability Program Implementation Guidelines

JA1006—Software Support Concept

JA1010—Mpintainability Program Standard

JA1010-1—Maintainability Program Implementation Guide

2.2 Related

A world-wide search capability for reliability standards and standards developing organizations is
available from: IIT Research Institute / Reliability Analysis Center, 201 Mill Street, Rome, NY 13440-6916

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 11 of 176

221

Available fro
Suite 500, R

AIAA PUBLICATIONS

m American Institute of Aeronautics and Astronautics (AlAA), 1801 Alexander

eston, VA 20191-4344.

Bell Drive,

AIAARO13—ANSI/AIAA R-013-1992, “AlAA Recommended Practice for Software Reliability,” February

1993.

2.2.2 BRITISH STANDARDS INSTITUTE PUBLICATIONS

Available fro

BS5760-P8-
Assessment
for Publicatid
223 DobO

Available fro
Division (SS

MILSTD882
Departm

NUREG6421
(COTS)
Commis

224 |EC

Available fro

IEC61508—
industry
part stan

IEC61511-1-
electroni

IEC61713—

processegs - Application guide," International Electrotechnical Commission, June 30, 2000

IEC61719—
assessn

m British Standards Institute (BSI), Linford Wood Milton Keyes, MK14 6LE UK.

-BS 5760, “Reliability of Systems, Equipment and Components,” Part (8;
of Reliability of Systems Containing Software,” British Standards Institute, Draft 1
n, July 7, 1997.

PUBLICATIONS

m Chief, Bibliographic Systems, U.S. Government Printing Office, Sales Manager
MB), Washington, DC 20402.

D—MIL-STD-882D, "Department of Defense Standard Practice for Syste
ent of Defense, February 10, 2000.
—NUREG/CR-6421, "A Proposed Acceptance. Process for Commercial (
Software in Reactor Applications," Office of Nuclear Reactor Regulation, US
ion, March 1996.

PUBLICATIONS
M International Electrotechnical @ommission, 1327 Jones Dr., Ann Arbor, MI, 481

SO/IEC 61508, Edition 1.0:\'Functional safety—Safety instrumented systems for
sector - Part 1: Framework; definitions, system, hardware and software requirem
dard, International Electrotechnical Commission, 1998.

—ISO/IEC 61511-4,)Edition 1.0: "Functional safety of electrical/electronic/prg
c safety-related systems," International Electrotechnical Commission, 2003,
SO/IEC 61743, Edition 1.0: "Software dependability through the softwar

SO/IEC 84719 (Draft). "Guide to measures to be used for the quantitative d
ent ofsoftware," ISO/IEC/TC56/SC7/WG10/N111, Draft February 11, 2000.

“Guide to
or Approval

hent

m Safety,"

Dff-the-Shelf
Regulatory

05.

the process
ents,” Multi-

grammable
e life-cycle

ependability

225 |EEE

E PURLICATIONS

Available from IEEE Computer Society, Publications Office, 10662 Los Vaqueros Circle, P. O. Box 3014,
Los Alamitos, CA 90720-1264.

IEEE12207-0—IEEE/EIA Std 12207.0-1996, “Software life cycle processes,” |IEEE Computer Society,
March 1998.

IEEE12207-1—IEEE/EIA Std 12207.1-1997, “Software life cycle processes - Life cycle data,” IEEE
Computer Society, April 1998.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 12 of 176

IEEE12207-2—IEEE/EIA Std

12207.2-1997, “Software life cycle processes

considerations,” IEEE Computer Society, April 1998.
IEEE610—IEEE Std-610.12-1990, “IEEE Standard Glossary of Software Engineering Terminology,” IEEE
Computer Society, September 1990,

IEEE982-1—|EEE Std-982.1-1988,

Software," IEEE Computer Society, June 1988,
IEEE982-2—|EEE Std-982.2-1988, "IEEE Guide for the use of Standard Dictionary of Measures to

Produce

IEEE1028—IEEE Std-1028-1994,

Reliable Software,” IEEE Computer Society, September 1988.

December 1997.
IEEE1220—IEEE Std-1220-1998, "IEEE Standard for Appllcatlon and Management of the Systems

Engineegis
IEEE1228—
March 1
IEEE1413—

Implementation

"IEEE Standard Dictionary of Measures to Produce Reliable

"IEEE Standard for Software Reviews," IEEE Computer Society,

IEEE Std-1228- 1994 "IEEE Standard for Software Safety Plans," IEEE Compu
DO4.
IEEE Std-1413-1998,"IEEE Standard Methodology for Reliability Predictien-and

for Electronic Systems and Equipment," IEEE Reliability Society, December 1998.

226 ISO

Available fro
Paramus, N
Via Guido D

1SO12207—
1SO15288—

8, 2002.
227 MIS

Available fro
Watling Stre

MISRA-VBS
Motor In

PUBLICATIONS

m Europe: ILI, Index House, Ascot, Berkshire, SL5 7EU, UK, USA: ILI, 610 Wint
07652, USA, Germany: ILI, DietlindenstraBe 15, D-80802,Munich, Deutschland

Arezzo, 4 - 20145 Milano, France: ILI, 25 rue de Ponthieu, 75008 Paris, France.

ISO/IEC 12207, “Software Life Cycle Processes,NAugust 1, 1995.

ISO/IEC 15288, “Systems Engineering — Systemi-Life Cycle Processes,” Edition 1|,

RA PUBLICATIONS

ter Society,

Assessment

brs Avenue,
ltaly: ILI,

November

m Motor Industry Software Reliability Association (MISRA), Electrical Group, MIRA Ltd,

et, Nuneaton, Warwickshire CVM10 0TU UK.

—ISO/TR 15497, "Development Guidelines for Vehicle Based Software, the Mot
dustry Software Reliability Association, ISBN 0 9524156 0 7, November 1994,

228 NAT

Available fro
8EX, United

ARMP1—AR

O PUBLICATIONS

m Directorate of Standardization, Stan 2, Kentigern House, 65 Brown Street, GLA
Kingdom

D Industry,"

\SGOW G2

DO2.

RMP<T, Edltlon 3, "NATO Reqmrements for Rel|ab|llty and Malntalnablllty " June 2

ARMP4—ARM

2001.

ARMP6—ARMP-6, Edition 1, "Monitoring and Managing In-Service R&M," December 1988.
ARMP7—ARMP-7, Edition 1, " NATO R&M Terminology Applicable to ARMPs," July 2001.

NATO96—NATO (Draft),

"COTS Software Acquisition Guidelines and COTS Policy

Revision,” NATO Communications and Information Systems Agency, January 12, 1996.

NATO97—NATO (Draft),

pls," October

Issues—1st

"NATO Guidelines for the Integration of Off-The-Shelf Software," Working

Paper AC/322(SC/5)WP/4, NATO C3 Board Information Systems Sub-Committee, June 30, 1997.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 13 of 176

2.2.9 NIST PUBLICATIONS

Available from National Institute of Standards and Technology, 100 Bureau Drive, Stop 3460,

Gaithersburg, MD 20899-3460.

NIST800-14—NIST 800-14, "Generally Accepted Principles and Practices for Securing Information

Technology Systems," National Institute for Standards and Technology, 1996.

NIST800-26—NIST 800-26, "Security Self-Assessment Guide for Information Technology Systems,”

National Institute for Standards and Technology, 2001.

NIST800-27—NIST 800-27, "Engineering Principles for Information Technology Security (A Baseline for

Achieving Security)," National Institute for Standards and Technology, 2001.

2.2.10 RTQA PUBLICATIONS

Available frgm RTCA, Inc., 1828 L Street, NW, Suite 805, Washington, DC 20036.

DO178B—HCTA/DO-178B/ED-12B, “Software Considerations in Airborne Systems and

Federal

D0O248B—H
Airbornd

2.2.11 SOFWARE ENGINEERING INSTITUTE PUBLICATIONS

Available frg

Aviation Administration software standard, RTCA Inc., December1992.

Systems and Equipment,” Prepared by SC-190, October 12,2001.

Fquipment,”

CTA/DO-248, Final Report for Clarification of DO-178B, "“Software Consiflerations in

m Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 152313-3890.

CMMI2000+CMMI-SE/SW-Continuous, V1.02, "CMML.for Systems Engineering/Software Engineering,

Version
CMMI-

Staged Representation," CMU/SEI-2000-TR-018, November 2000.

1.02, Continuous Representation," CMU/SEI-2000-TR-019, November 2000.
E/SW-Staged, V1.02, "CMMI for Systems Engineering/Software Engineering, V|

ersion 1.02,

SPICE98—ISO/IEC 15504:1998: “Software,Process Improvement Capability Determination (SPICE)—

Softwar

2212 UK

Available frgm UK Defence Standardization, Room 1138, Kentigern House, 65 Brown Street,
G2 8EX, Unjted Kingdom.

DEFS0042-p—DefenceStandard 00-42 (PART 2)/Issue 1, “Reliability And Maintainability

Guides,
DEFS0042-
Guides,

DEFS0055- z

Process Assessment,” ISO/IEC/JTC1/SC7/WG10/N111, ISO 1998.

MINISTRY OF DEFENCE PUBLICATIONS

Part 2;_Seftware,” United Kingdom Ministry of Defence, September 1997.
B—Defence Standard 00-42 (PART 3)/Issue 1, “Reliability And Maintainability

GLASGOW

Assurance

Assurance

Part’3: R&M Case,” United Kingdom Ministry of Defence, October 1999.

in Defence

Equipment," Part 1: Requirements, Part 2: Guidance," United Kingdom Ministry of Defence, August

1997.

DEFS0060—Defence Standard 00-60, “Integrated Logistic Support”, Issue 2, “Logistic Support Analysis
Application to Software Aspects of Systems”, Part 3, United Kingdom Ministry of Defence, March

19098.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 14 of 176

2.3 Publications

BASILIO2—Basili, Vic, Boehm, Barry, and others, "What We Have Learned About Fighting Defects,"
Proceedings of the Eighth IEEE Symposium on Software Metrics (METRICS™02), IEEE Computer

Society,

2002. http://www.CeBASE.org

DACS02—DACS CD, "Software Reliability Source Book," Data and Analysis Center for Software, Rome,
NY, 2002. http://iac.dtic.mil/dacs/
FALLA96—Falla, Mike, "Results and Achievements from the DTI/EPSRC R&D Programme in Safety
Critical Systems," Edited by Mike Falla, Motor Industry Software Reliability Association, November
1996. http://www.comp.lancs.ac.uk/computing/resources/scs/
HELAN98—Helander, M., Shao, M., and Ohlsson, N. “Planning Models for Software Reliability and Cost,”

IEEE Tr
HERRM29
Key Ind
JONES97—
Producti
LAKEY 97—
Notebog
http://ww
LEVESON9
Publishi
LITTLEWDO
Future g
Enginee
LYU96—Lyy
1996.
MUSA92—N
March 1
MUSA99—N
NEUF02—N
Journal
PRIM97—P
Researa
SCHN97—S
Reliabili
SSSHDBK9
Safety H
U.S. Air
XTALKO3—
No. 2, F

Herrmann, D., Software Safety and Reliability: Techniques, Approaches, and-§
strial Sectors, IEEE Computer Society, Los Alamitos, CA, 1999.

Jones, Capers, “Software Quality In 1997: What Works and What-Doesn
vity Research, 1997. http://www.spr.com/

| akey, Peter and Neufelder, Ann Marie, “System and Software, Reliability
k,” Rome Laboratory Report, Griffiss Air Force Base, Rome
w.cs.colostate.edu/~cs530/rh/

b—Leveson, Nancy G., Safeware: System Safety and“C€omputers, Addis
ng Company, 1995.

f Software Engineering”, State of the Art Reports@@iven at the 22nd Int. Conf.
ring, Limerick, June 2000, (A. Finkelstein, Ed.), pp:177-188, ACM Press, 2000.

lusa, John D. “Operational Profiles in Software Reliability Engineering,” IEE
DO3, pages 14-32.

lusa, John D., Software Reliability Engineering, McGraw-Hill Book Company, NY
eufelder-Owner, A., N., “The Faets About Predicting Software Defects and
Df the RAC, 2ndQ, 2002, pp 1:4.

RIM-97, "Worldwide Reliability’ & Maintainability Standards," Reliability Analysis
h Institute / Reliability Analysis Center, Rome, NY, 1997.
chneidewind, N., “Reliability Modeling for Safety-Critical Software,” IEEE Tran
y. Vol 46, Number@))March 1997, pp 88-98.
b—Joint Software System Safety Committee and EIA G-46 Committee, "Softw
andbook," Jeint Services Computer Resources Management Group, U.S. Navy
Force, 1999

CrossTalk—"Programming Languages," Journal of Defense Software Engineer

ebruary 2003.

tandards of
;) Software

Assurance
NY, 1997.

on Wesley

0—Littlewood, B. and Strigini, L., "Software Reliability-and Dependability: a Roadmap, in The

bn Software

., Michael, Handbook of Software Reliability Engiheering, ISBN 0-07-039400-8, McGraw Hill,

F Software,

1999.
Reliability,”

Center, IIT
sactions on

are System
U.S. Army,

ng, Vol. 16

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 15 of 176

3. Definitions

3.1 Acronyms

AlAA
AIR
ANSI
ARMP
ASIC
BSI
CM
CMMI
COTS
DACS
DoD
DOE
DSl
EIA
FAA
FIR
FMECA
FRACAS
FTA
GQM
GUI
HCI

14

IEC
IEEE
ISO
JA

KSLOC
MISRA
MOD
NASA
NATO
NCSLOC
NDI
NIST
oTs

QA

American Institute of Aeronautics and Astronautics
Aerospace Information Report

American National Standards Institute

Allied Reliability and Maintainability Publication

Application Specific Integrated Circuit
British Standards Institute

Configuration Management

Capability Maturity Model Integrated
Commercial Off-The-Shelf

Data and Analysis Center for Software
Department of Defense

Design Of Experiment

Delivered Source Instructions

Electronics Industries Alliance

Federal Aviation Administration

Formal In-Process Review

Failure Modes, Effects and Criticality Analysis
Failure Reporting and Corrective Action. System
Fault Tree Analysis

Goal, Question, Metric

Graphical User Interface

Human Computer Interface

Independence, Isolation;\Ineperability, Incompatibility
International Electrotechnical Commission
Institute of Electrigal’and Electronic Engineers
International Qrganization for Standardization

Two character code for SAE ground vehicle (J) and aerospace (A) sta

guidelines

Thousands (K) of Source Lines of Code

Mator Industry Software Reliability Association
Ministry Of Defence (United Kingdom)

ndards and

MNationat-Aeronattics-and-Space-Administration
North Atlantic Treaty Organization
Non-Commented Source Lines of Code
Non-Developmental ltem

National Institute of Standards and Technology
Off-The-Shelf

Quality Assurance

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 16 of 176

QFD Quality Function Deployment
R&M Reliability and Maintainability
RAC Reliability Analysis Center
RMSL Reliability, Maintainability, Supportability, Logistics
SAE Society of Automotive Engineers
SEl Software Engineering Institute
SFMECA Software FMECA
SFTA Software FTA
SRE Software Reliability Engineering
UK United Kingdom
V&V Verification and Validation

3.2 Term

The followin

te
re

[0]
[1]

[2] reference [JA1002]

[3] reference [JA1000-1]

[4] reference [ISO12207]

[5] reference [MUSAQ9]

[6] reference [JA1005]

[71 reference [DO178B]

[8] reference [MIL-STD-882D]

3.21 ACQUIRER[4]

An organizatjon that procures a system, software product or software service from a supplier.
NOTE—The

3.22 CERTIFICATION[A

Legal recognitiony.the certification authority that a product, service, organization or persg
with the requiretnents. Such certification comprises the activity of technically checking t

erms apply
finitions in

key terms are defined. Reference [IEEE610] is a generally capplicable rlerence for

acquirer could bé ane or more of the following: buyer, owner, user, and/or purchaser.

n complies
he product,

service, organization or person and the formal recognition of compliance with the applicable rg
by issue of a certificate, license, approval or other documents as required by nationa
procedures.

3.2.3 CERTIFICATION AUTHORITY/REGULATOR [7]

quirements
| laws and

The organization or person responsible within the state or country concerned with the certification of

compliance with the requirements.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012 Page 17 of 176

3.2.4 CONTRACT[4]

A binding agreement between two parties, especially enforceable by law, or a similar internal agreement
wholly within an organization, for the supply of software service or for the supply, development,
production, operation, or maintenance of a scftware product.

3.25 COVERAGE[O]
The ratio of actual to possible software features/functions, requirements, statements, and/or

branches/paths that are exercised during one or more test cases. Types of coverage can be categorized
by the unit, e.g., feature coverage, requirements coverage, statement coverage, path coverage.

326 CUYTOMER[O]

See Acquirg

o

3.2.7 DERECT

See Softwafte Defect.
3.2.8 DEHENDABILITY[O]
See Surety.
3.2.9 DEeJIGN RELIABILITY[O]
(1) The set pf activities that focus on the prevention, detection, prediction, estimation, and/or nitigation of
defects in goftware specifications (e.g., user guide,srequirements, design, code, test plan/cases). (2) A
measure of [the remaining defects in software specifications at a specific reference point. (3) A measure
of the predigted software reliability at a specific.reference point.

3.2.10 DEVELOPER[4]

An organizgtion that performs development activities (including requirements analysis, des|gn, testing
through acceptance) during the software life cycle process.

3.2.11 ERAOR[1]

(1) A discrepancy between a computed, observed or measured value or condition and the trug, specified
or theoreticglly correct value or condition. (2) Human action that results in software containing 4 fault.

3.2.12 Faluge]

(1) The inability of a system or system component to perform a required function within specified limits. A
failure may be produced when a fault is encountered and a loss of the expected service to the user
results. (2) The termination of the ability of a functional unit to perform its required function. (3) A
departure of program operation from program requirements.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 18 of 176

3.2.13 FAILURE INTENSITY[5]

See Failure

Rate.

3.2.14 FAILURE MODES, EFFECTS AND CRITICALITY ANALYSIS [3]

A proactive approach used for determining the potential failure modes of a system/equipment (including
software), all likely ways in which a component or equipment can fail, causes for each failure mode, and
effects/criticality of each failure mode.

3.2.15 FAILURE RATE[1]

(1) The rat
example fai
The ratio of
number of ¢
3.2.16 Fall

A set of pn
information

3.2.17 FAall
A rating sys
3.2.18 FaU
See Softwa
3.2.19 Fau

The surviva
themselves

3.2.20 Fau

An analysis
potential so

o of the number of failures of a given category or severity to a given period
ures per second of execution time, failures per month. Synonymous with fajlureir
the number of failures to a per unit of time, failures per number of transactions,
omputer runs.

URE REPORTING AND CORRECTIVE ACTION SYSTEM [3]

bf time; for
tensity. (2)
ailures per

bcesses, procedures, and tools for reporting, reviewing, andlyzing, correcting, and storing

pbout system/software failures.

URE SEVERITY[ADAPTED FROM 1]

em for the impact of every recognized credible failure mode.
LT

e Fault.

LT TOLERANCE[1]

attribute of a system that(allews it to deliver the required service after faults have
within the system.

LT TREE ANALYSIS{3]

technique where identified potential system failure modes are analyzed in ter
tware faults(single point of failure) or multiple faults (multiple points of failure) mig

the potential failuresmode.

3.2.21 I4-1

NDERENDENGE, ISOLATION, INOPERABILITY, INCOMPATIBILITY[O]

manifested

s of what
ht result in

3.2.21.1 Independence

Multiple, independent subsystems and completely different sources of enabling stimuli for critical
functions are incorporated within the system.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 19 of 176

32212 Is

olation

Critical functions are encapsulated separate from any other functions that might cause undefined

interactions

with the critical functions

3.2.21.3 Inoperability

Critical functions become predictably and irreversibly inoperable in credible abnormal operating
environments before the isolation features are compromised

3.2.21.4 Incompatibility

Functional
critical func

3.2.22 LIFE

A framewor
maintenanc

to the termimation of its use.

3.2.23 No

Hardware 4
employed i

3.2.24 OFF
Product tha
3.2.25 OPH
The comple
3.2.26 OPE
(1) The set

mitigation @
certification

{3) A measyre of the'estimated software reliability at a specific reference point.

3.2.27 PR

nterfaces are constructed so that they are incompatible with functions (in parti
ions) with which they are not intended to interface

CYCLE MODEL[4]
k containing the processes, activities, and tasks involved in the development, op4
e of a software product, spanning the life of the system from the.definition of its re
-DELIVERABLE ITEM[4]

r software product that is not required to be defivered under the contract b
the development of a software product.

-THE-SHELF PRODUCT[4]

is already developed and available, usable either "as is" or with modification.
RATIONAL PROFILE[5]

te set of operations (major’system logical tasks) with their probabilities of occurren
RATIONAL RELIABILITY[O]

f defects in~the operational software code through dynamic unit, integration, g
testing). (2)'A measure of the remaining faults in software code at a specific refer

ular safety

ration, and
quirements

ut may be

bf dynamic test.activities that focus on the prevention, detection, prediction, estimagion, and/or

cceptance,
ence point.

QESS[4]

A set of inte

rrelated activities, which transform inputs into outputs.

NOTE—The term "activities" covers use of resources.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 20 of 176

3.2.28 QUALIFICATION[4]

The process of demonstrating whether an entity is capable of fulfilling specified requirements.

3.2.29 QUALITY ASSURANCE[4]

All the planned and systematic activities implemented within the quality system, and demonstrated as
needed, to provide adequate confidence that an entity will fulfill requirements for quality.

NOTES—(1) There are both internal and external purposes for quality assurance: (a) Internal quality
assurance: within an organization, quality assurance provides confidence to management; (b)
External quality assurance: in contractual situations, quality assurance provides confidence to

thd
(3
prq

3.2.30 SAF

Freedom from those conditions that can cause death, injury, occupational, illness, damage t

equipment ¢
3.2.31 SE(q

Features a

3.2.32 SOF

Any condlitig

software fsjure. Defect and fault are sometimes:considered to be synonymous although f4

strictly con
3.2.33 SOF

The inabilit
requiremen

3.2.34 SOF

(1) A defec
causes a fu

3.2.35 SOR

hd procedures of a system that ensure its requirements are met for timely
authenticatgd services and for protection from denial of authenticated services.

customer or others. (2) some quality control and quality assurance aciions are |
Unless requirements for quality fully reflect the needs of the user, quality assaran
vide adequate confidence.

ETY[8]

r property, or damage to the environment.

URITY[O]

TWARE DEFECTI0]
n in a software artifact (e.g., specification, code, test) that if left unchanged coulg
dered to be a defect in the code.
TWARE FAILURE[2]

of a software compenent to perform its required functions within specified p
S.

TWARE FAULT[1]

in the code that can be the cause of one or more failures. (2) An accidental co
hctionalkunit to fail to perform its required function. Synonymous with bug.

TWARE FAULT[2]

hterrelated.
ce may not

b or loss of

access to

result in a
ult is more

brformance

hdition that

An accidental condition that causes a software functional unit to fail to perform its required function.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 21 of 176

3.2.36 SOFTWARE FAULT DENSITY[0]

The ratio of code faults to a unit of size, such as function points, modules, source lines of code at a
specific reference point of time, such as at the start of system test or operational use.

3.2.37 SOFTWARE MAINTAINABILITY[6]

The ease with which a software system or component can be modified to correct faults, improve
performance or other attributes, or adapt to a changed environment. Also, a set of attributes that bear on
the effort needed to make specified modifications.

3.2.38 SOFTWARE MAINTENANCEI[6]

The proceg
performang

3239 So

The softwa

Changes npay be termed corrective, perfective and adaptive, and may-also embrace modifi

are designg
3.2.40 So
The set of ¢
3241 So

(1) The prq
conditions.
performang

NOTE—Q
is

pr
sQ

pr
e
3.242 So

The eviden

bs of modifying a software system or component after delivery to correct faul
e or other attributes, or adapt to a changed environment.

FTWARE MODIFICATION SUPPORT[6]

re support activities of change analysis, implementation, test and.release of softwa

d to prevent foreseeable future software operating problems;

ETWARE PRODUCT[1]

omputer programs, procedures, and possibly asseciated documentation and data.

FTWARE RELIABILITY[2]

bability of failure-free operation of a.software program for a specified time und
(2) A set of attributes that bear~on the capability of software to maintain

e under stated conditions for a stated period of time.

antitative descriptions of software reliability are typically not sufficient evidence t}
reliable, and other evidence such as fault tolerant design, coverage measures,

ftware can be reliably loaded, operated, and supported. Hence, the combination
bvided from both definitions (1) and (2) above is typically used to determine the
ftware.

FTWARE-RELIABILITY CASE[0]

s, improve

['e products.
Cations that

br specified
its level of

at software
Engineering

actices, safety analyses, and so forth are necessary to provide adequate confidence that

of evidence
reliability of

sistent with

system levt

ambiguities have been resolved.

n, and that

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 22 of 176

3.2.43 SOFTWARE RELIABILITY ENGINEERING[1]

The application of statistical techniques to data collected during system development and operation to
specify, predict, estimate, and assess the reliability of software-based systems.

3.2.44 SOFTWARE RELIABILITY ESTIMATION[1]

The application of statistical techniques to observed failure data collected during system testing and
operation to assess the reliability of the software.

3.2.45 SOFTWARE RELIABILITY MANAGEMENT[O]

The proceps of optimizing the reliability of software across the complete software (Jif

emphasizi
reliability,
schedule,

human error prevention, fault detection and removal, use of measurements
nd balancing the level of reliability consistent with project constraints stich as
nd performance.

3.2.46 SOFTWARE RELIABILITY MODEL[1]

A mathem
factors suc

3.2.47 So

A descripti

ical expression that specifies the general form of the software/failure process as g
1 as fault introduction, fault removal and the operational envirenment.

ETWARE RELIABILITY PLAN[O]

requiremengs for software reliability have been defined through negotiations with the custome

have been
demonstrat

3.2.48 So

A forecast

identified and conducted that ensurextustomer reliability requirements arg
ed evidence is provided that the customerireliability requirements have been achie

FTWARE RELIABILITY PREDICTION[1]

pf the reliability of the software based on parameters associated with the software

its developinent environment.

3249 So

The manag

FTWARE RELIABILITY PROGRAMI[O]

a system rgliability program and provide adequate evidence that the software reliability re

have been
infrastructu

3.250 So

determined, met, and demonstrated. The two key components of the m
e are thexSoftware Reliability Plan and Software Reliability Case.

FTWARE RELIABILITY PROGRAM [ADAPTED FROM 3]

e cycle by
to improve
resources,

function of

on of the set of activities that will be performed throughout a project to g¢nsure that

r, analyses
met, and
ed.

broduct and

ement infrastructire and activities necessary to adequately integrate software religbility within

quirements
anagement

The organizational processes and practices that are intended to: (1) Ensure the delivery of a software
product that has been adequately designed to achieve its performance specifications within its system
application context; and (2) Ensure there is adequate evidence that the performance specification for the
delivered software product has been achieved and continues to be met during operational use.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 23 of 176

3.2.51 SOFTWARE SAFETY[0]

Features and procedures which ensure that a software product performs predictably under normal and
abnormal conditions, thereby minimizing the likelihood of an unplanned event occurring, controlling and
containing its consequences, and preventing accidental injury, death, destruction of property and/or
damage to the environment, whether intentional or unintentional.

3.2.52 SOFTWARE SECURITY[0]
Features and procedures of the software component of a system that ensure the system's requirements

are met for timely access to authenticated services and for protection from denial of authenticated
services.

3.2.53 SUAPLIER[4]

An organizdtion that enters into a contract with the customer for the supply of a system, software product
or software service under the terms of the contract.

NOTES—(1|) The term "supplier" is synonymous with contractor, producer,-seller, or vendpr. (2) The
cugtomer may designate a part of its organization as supplier.

3.2.54 SURETY[O]

Attributes gf and activities associated with achieving and. assessing system safety, sefurity, and
reliability.

3.2.55 SYYTEM[1]
(1) A colleclion of people, machines and methodserganized to accomplish a set of specific fuhctions. (2)
An integratgd whole that is composed of diverse; interacting, specialized structures and subfupctions. (3)
A group or| subsystem united by some interaction or interdependence, performing many|duties but
functioning as a single unit.

3.256 SYYTEM RELIABILITY[3]
The ability gf a system to perform a stated function under stated conditions, for a stated period|of time.
3.2.57 SYHTEM SAFETY/[S]
The application of-engineering and management principles, criteria, and techniques jo achieve

acceptable mishap risk, within the constraints of operational effectiveness and suitability, timg, and cost,
throughout fll phases of the system life cycle.

3.2.58 TIME[1]

There are several categories of time that may be of interest for determining when failures occur and the
impact of the frequency of the failures. These categories include: (1) Calendar Time: chronological time,
including time during which a computer may not be running. (2) Clock Time: elapsed wall clock time from
the start of program execution to the end of program execution. (3) Execution Time: the amount of actual
processor time used in executing a program.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 24 of 176

3.2.59 VALIDATION[4]

Confirmation by examination and provision of objective evidence that the particular requirements for a
specific intended use are fulfilled.

NOTES—(1) In design and development, validation concerns the process of examining a product to
determine conformity with user needs. (2) Validation is normally performed on the final product

un

der defined operating conditions. It may be necessary in earlier stages. (3) "V

alidated" is

used to designate the corresponding status. (4) Multiple validations may be carried out if there
are different intended uses.

3.2.60 VERIFICATION[4]

Confirmatio
fulfilled.

NOTES—(1
giv
us

4. Life (

The softwa

illustrated in

established

stages, and
be effective

Manageme
within this

h by examination and provision of objective evidence that specified requirements

} In design and development, verification concerns the process of examining the
en activity to determine conformity with the stated requirement for that'activity. (2)
bd to designate the corresponding status.

Cycle Management

e reliability program is most effective within a complete life cycle management a

have been
result of a

'Verified" is

pproach as
one can be

Figure 1. Although it is recommended to initiate.a program early in the life cycle,
at any point in the life cycle. It may be more difficult to start a program during |

section and specific program tasks™ are described in Section 5. A comprehe

ter system

although certain practices may not be appropriate there are always some practiges that will

nt and technical activities that might becpart of a software reliability program are gummarized

ive set of

potential analysis, design, and verification, méthods and techniques that can be applied in |various life

cycle phase
need to be
41 Prog
The use of
recommeng
implemente
such a prog
disciplines,
software re

ntegrated into a software reliability program are discussed in Section 6.
fam Management

a software reliability plan/case framework to capture activity planning and re:
ed reliability, program management mechanism. A software reliability program
d within theycontext of the operational system in which the software is to operate.

ram must consider the overlap of requirements that may arise from closely relate

s are summarized in Appendix*C. Some special software reliability considerations that may

sults is the
should be
In addition,
d specialty
bral. Since

such ‘as safety, security, and supportability, as well as quality engineering in gen

derive from

related to requirements.

iability is a measure of meeting requirements, this measure should include requirgments that
aﬂmﬂ-mﬂalﬁhaﬁheﬂeﬁnmmharwnsmmm—sdeaﬂj stated and

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 25 of 176

| Concept

Contract Acceptance

Feasibility 1 Design & Production | InService

-€

System/Software Reliability Deﬁnitio&

System/Software Reliability Modeling /Allocation

Feliability Analysis, Estimation, Prediction and Tﬁ

-€

Reliability Assessment Task;

{} ﬁ U Inputs & Controls ﬁ {} ﬁ {}

PROGRAM PLANNING & CONTROL

L It Outputs {1} L1

SOFTWARE RELIABILITY PLAN

SOFTWARE RELIABILITY CASE

Achieving t
strategy of
system reli
milestones
project acti

A software
expectation
document,
Structure).
and descril
sustain the
schedules,
show prog
software re

Some of t
standards

FIGURE 1—SYSTEM/SOFTWARE RELIABILITY LIEECYCLE MANAGEMENT

blanned activities. The strategy should be developed and executed in conjunction
bbility plans. There should be visibility to _preject and higher program manage
And outputs to ensure that control and monitoring of reliability activity is integrate
ities.

integrated part of other docduments, activities integrated into a system Work
A software reliability plan needs to address the software aspects of a system re
software reliability-objectives. Each planned activity should describe associ

ess toward goals throughout the life cycle.
iability caser

he applicable management practices include the use of life cycle software
(C.4.3), requirements management (C.4.5), risk management (C.4.6), c

manageme

he required reliability for any particular software.product will depend on having an effective

with overall
s of major
with other

reliability plan documents the strategy for satisfying customer reliability requirg
s for a software product. This 'plan” can assume a variety of physical forms (e.T, separate

e the specific software-related life cycle activities that are to be undertaken to 3

resources, expected’ methods/techniques to accomplish the activity, and specifig

ments and

Breakdown
iability plan
chieve and
hted tasks,
metrics to

Results of the activities are desciibed in the

bngineering
bnfiguration

Nt(€.4.1), and FRACAS (C.4.2) within the overall system/software project manage|'nent.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 26 of 176

4.2 Technical Activities

Engineering methods can provide confidence that potential faults have been prevented, detected,
removed, or mitigated to an acceptable level of confidence. Prototype experiments and trade-offs may be
conducted to determine operational profiles and preferred design solutions, depending on the negotiated

agreement

system reliability requirements.

between the supplier and customer.
Software reliability computations are integrated as part of

reliability computations.

Software reliability requirements are allocated from

the system

When security, safety, or other high criticality requirements are identified, then specific additional

methods can and should be conducted to prowde necessary reliability ewdence

forth, or co
from speci
the context

In addition,
activities to
reliability de
broader cor

b|ned into one "case" report Thus functlonal reqmrements and reqmrements
Ity interests, as well as selected system- and software-specific methods/technigie$ determine
in which a software reliability technical activities are conducted.

enable process improvement. Such feedback should be stored-in)an organizati

text to support an organization's software reliability process improvement program

The genera| criteria for selection of a methods to support technical activities include:

1. substarj

tive use;

2. correlatjon with technical measurement of defect/failure reduction; and

3. evidend
These crite
defects/faul
technical ag
will tend ta
[JONES97]
In addition,
areas are il

NOTE—Da

e of good benefit to cost performance.

fia are typically based on rather gualitative judgment. It is important to unders

have unique defect injéction/detection/removal profiles.
of this type of information for leading, average, and lagging projects is illustrated
defect potential, defeet removal efficiency, and delivered defects for a variety of
ustrated in Table/3:

a is in defegts per function point.

Dependlng on the

1rity and so
that derive

there should be feedback of lessons learned and case evidence from.such softwafe reliability

bn's overall

ta base. Thus, each software product's reliability plan and casé-\ihformation can He used in a

and where

s typically occur in software products as well as the types of defects so specifically effective
tivities can be selected for use;* Each application, with customer-/supplier-specific|
A general view from reference

influences,

in Table 2.
application

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 27 of 176

TABLE 2—EXAMPLE DEFECTS AND REMOVAL EFFICIENCY PROFILES

Task Leading Average Lagging
Organization Organization Organization
Requirements 0.55 1.00 1.45
Design 0.75 1.25 1.90
Coding 1.00 1.75 2.35
User manuals 0.40 0.60 0.75
Bad fixes 0.10 0.40 0.85
Total Potential Defect Density 2.80 5.00 7,30
Defec{ Removal % 95% 85% 75%
Actuell Delivered Defect
Density 0.14 0.75 1.83
{Defegts/Function Point)

DEFECTS FOR APPLICATIONS

TABLE 3—EXAMPLE DEFECT REMOVAL EFFICIENCY, DELIVERED

System Commercial | Information | Military Ovefall

Software | Software Software Software | Avefage
Defegt Potentials 6.0 5.0 45 7.0 5.6
Defeqt Removal Efficiency | 94% 90% 73% 96% 88%
Delivg¢red Defect Density 04 0.5 1.2 0.3 0.65
{Defefts/Function Point)
First Year Discovery Raté ™| 65% 70% 30% 75% 60%
First Year Defect Density 0.26 0.35 0.36 0.23 0.30
{Defept/Function Point)

The followifg general activities from reference [NEUF02] as illustrated in Table 4 have beer

with a highgr reduction in defects.

correlated

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 28 of 176
TABLE 4—PRACTICES ASSOCIATED WITH REDUCED DEFECT DENSITY
Practice System Phase &
SW Activity
All requirements are mapped to system tests Concept/Feasibility
(SW Requirements)
Requirements are reviewed before designing or coding Concept/Feasibility
(SW Requirements)
System test beds are used Design&Production
(SW Testing)
Tes| plan started at least one phase of the life cycle before | Phases before testifig
testing begins (SW Testing)
Teslers use a FRACAS (defect tracking system) to determine | Design&Production
whaf to test/retest (SW Testing)
All Upgrades made after a system test are regression tested In Service
(SWSupport)
Cortective action releases per year <= 4 In Service
{SW Support)
All modifications made after a system test are regression | In Service
testgd (SW Support)
FRACAS used for tracking all corrective actions In Service
{SW Support)
Walk-thrus are performed for all phases of life cycle All phases
The type of|information provided in Tables 2,3, and 4 can provide guidance to a software prgject for the
effective selection of software engineering-and reliability techniques.
Some genefal areas of technical activity and methods to support that activity throughout thq typical life
cycle activitles are summarized-below.
a. Negotiate Reliability Réquirements
Reliability requirerments are negotiated among supplier, customer and certification authority
represeptatives.~The requirements for software reliability contribution to overall system feliability is
derived|from,an understanding of the system reliability goals and objectives. An overall strategy for
software “reliability achievement is determined including pre-development, developmept, and in-

service concepls, aclivities, methods and tools, risk analysis, and fraining and infegrafion with other
disciplines and staff. Activity-associated measures are established in terms of goals, assumptions
and claims, and expected evidence to meet the claims. [t is expected that the reliability requirements

may continue to be negotiated somewhat throughout the life cycle.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012 Page 29 of 176

Example Methods: Quality function deployment, customer surveys, Goal-Question-Metric, operational
profiles/scenarios, support scenarios.

Develop An Architecture/Design for Reliability

Design the software architecture and implementation to support design requirements for software
reliability, and iterate with the system and software design effort to ensure reliability characteristics
are built into the software artifacts. Ensure the design and implementation meet specified reliability
claims through appropriate defect prevention, detection, removal, and mitigation activities.

Example Methods: Software Reliability Engineering, FMEA, FTA, hazard analysis, design by contract,

partitioning, formal specifications/analysis, formal scenario analysis/operational profiles, reliability
predictipns.

Constryct a Test Approach as Early as Possible

Test planning should be conducted at least one phase prior to test execution. Reliability lengineered
testing |is planned as part of the test planning approach. Testing is critical providing puantitative
evidenge that reliability requirements have been met. Ensure testing is designed to megt expected
reliabilify claims, including measurement and categorization of "déefects found and |associated
measultes of reliability growth.

Example Methods: Test plan/harness developed during,\design; coverage analysig; reliability
predictipns, reliability estimation.

Apply g Formal Review Process During All Phases of Life Cycle

A formgl review process should be applied during all phases of life cycle with the collectipn of defect
data and follow-up review to ensure corrections’have been made.

Example Methods: Formal in-process reviews: defects (type and severity, time, soufce); defect
remova| efficiency; reliability predictions.

Condugt Comprehensive Tests

Testing| is performed at-all' levels (unit, integration, system, alpha/beta) to ensure goverage of
requireinents. Test cases as determined from the test planning are executed, data collected on
failures| continued testing determined through reliability estimation and programmatic cost/schedule
constrajnts. Regression testing is conducted after any modifications due to development system
testing pr in-service support changes.

ExampleCMethods: Test suites: unit, integration, system; Dynamic testing: functional, interface,
fisti i iif i ' rioritization;

reliability estimation from test data.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 30 of 176

f. Use Failure Reporting and Corrective Action Procedures

Failure reporting and corrective action procedures should be used during development initiate the
defect tracking process and to determine testing/retesting activities. This activity is continued during
in-service support as part of the change management process.

Example Methods: FRACAS, reliability estimation.

Demonstrate Acceptance

Acceptance (qualification, certification, customer demonstration) testing/demonstration is conducted

to ensure_reliability case evidence is sufficient to meet customer and/or regulatory requiren

e Methods: Customer/certification authority system acceptance test suites) religbility case

Exampl
evideno

Sustain

Sustain
attentio
analyze
whethe
modifie
reliabilit

Exampl
case eV

4.3 Roleq

The roles gnd responsibilities for system/software reliability are illustrated in Figure 2. The

Supplier, arj
on the appli

e review.

Reliability Throughout In-Service
ment of an acceptable level of software reliability during in-service includes|
n to reliability data collection and sustainment of the planicase framework. (
failure data during operational use to determine fault categories, sources of
operational reliability claims are being met. Sustainfimprove the reliability as

y plan/case and associated reliability activities.

e Methods: FRACAS, customer/certification atthority system acceptance test suitg
idence review; repeat activities as necessary from the development phase.

and Responsibilities

d Certification Authority have(special relationships that will vary from project to pr
Cation area, criticality of the system, and the formality of the engineering process.

nents.

continued
Collect and
ailure, and
software is

i during support. Ensure the support concept includes.dpdates as necessary to the software

s; reliability

Customer,
bject based

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 31 of 176

- Establishes Criteria
- Provides Guides

- Reviews Evidence \ . .

- Confims Results Certification
4 Requirements
7 \ N

/ Gl'aded Evidence for
Confirmation . Evaluation
/ FOImalltYCerﬁﬁc ation of

Conformance
Product
Requirements
Product
- Defines Requirements with
- Defines Acceptance Criteria .)
- Performs Acceptance Activities Certification

FIGURE 2—CUSTOMER-SUPPLIER-CERTIFICATION RELAJIONSHIP

4.3.1 CU$TOMER

The custonjer represents an organization that procures a system; software product or software service

from a sugplier.
purchaser.
ensure thei

reliability eyidence that the delivered product satisfies thespecified requirements.

In some ca
will ensure the specified requirements include appropriate regulatory/certification concerns.
the customer must ensure that requiredOsupplier interactions, demonstrations, and
communications with such authorities \is conducted as required. Confirmation of
requirements is coordinated among the\cuistomer, supplier, and certification authority.

4.3.2 SURPLIER/CONTRACTOR

The suppligr represents an 6rganization that enters into a contract with the customer for the
system, software product or software service under the terms of the contract. The term *
synonymous with conttaetor, producer, seller, or vendor.
organizatioh as a supplier.
developer, Yendot that supplies OTS parts, and so forth.

4.3.3 CERTIEICATION/ACCEPTANCE AUTHORITY

The customer may designate a
The supplier may have many separate entities such as the contract

The customer could be one or more of the “following: buyer, owner, user, and/or
It is the responsibility of the customer to establishtheir requirements, work with thg
requirements are correctly interpreted, and provide appropriate review and appfoval of the

supplier to

es where regulatory or certification authorities must approve use of the system, tHe customer

In addition,
any other
Certification

supply of a
supplier" is
part of its

The Certification Authority/Regulator is the organization or person responsible within the state or country

concerned with the certification of compliance with the requirements. Certification is the legal
by the certification authority that a product, service, organization or person complie
requirements.
organization or person and the formal recognition of compliance with the applicable requi

recognition
s with the

Such certification comprises the activity of technically checking the product, service,

rements by

issue of a certificate, license, approval or other documents as required by national laws and procedures.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 32 of 176

A software product may be certified as a separate item, a component part of a hardware component
certification, or a software component part of a complete system depending on the application. The
certification authority may use independent assessment personnel, or designees within the supplier
organization that have been approved for the independent assessment role. Other combinations are
possible depending on the country, customer organization, application, and critical nature of the software.

5. Task Activities

The purpose of this section is to outline specific task activities that will support achievement of a reliable
software product within the context of the Software Reliability Program Standard [JA1002] and the system
reliability standard and guidelines presented in references [JA1000] and JA1000-1]. Software reliability
cannot be improvised. It must be addressed consistently and systematically, and as an integrated part of

reliability r¢quirements are being met. Addressing reliability early in the life cycle, ¢an |reduce the
possibility gf costly product redesign. The broad approach to ensure software reliability, is illustrated in
Figure 3, aijd based on three simple principles:

a. determine customer software reliability requirements;

b. meet cystomer software reliability requirements; and

c. demongtrate that the software reliability requirements have been satisfied.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 33 of 176
M 1
CONCEPT |
PROPOSAL PLAN l |
«Organization i
<Design Reliability Tasks DEVELOPMENT |
«Operational Reliability Tasks — |
«Schedule/Deliverables—— |
PRODUCTION i
ACCEPTANCE !
Hergy, |
4 Transition
E ' OPERATION
i &
| SUPPPORT
PTOZ T 1 v
Development Case |
Y
Progress 2
Development Case In-Skrvice
v Chse
Progress 3,
Development Case

Requirements

PROPOFAL CASE Design Reliabili\Evidence A
«Life C .clc Concept Operational Reliability Evidence
«Operafional Profiles Appendices
«Historjcal Evidence ‘

A software
software rdg
requiremen
have been
reliability P
software is
requisite re
software re

A standard
reliability pr
life cycle a
content are

Operational Profiles

=)

FIGURE 3—SOFTWARE RELIABILITY PROGRAM PLAN-CASE FRAMEWORK

reliability program defines the activities necessary to negotiate with the custom

br what the

liability requirements are, identify) and conduct analyses that ensure customér reliability

fs are met, and provide demonstrated evidence that the customer reliability rg
hchieved. The identified activities along with measures of acceptance constitute t
an. These activities include life cycle practices, methods, and processes that def
designed to meet reliability as well as how the software is operationally tested to
liability has been attained. The results gathered from the analysis activities cg
iability Case.

Plan and:Case mechanism is the recommended approach to documenting

quirements
he software
ne how the
ensure that
nstitute the

a software

ogram [JA1002]. This Plan-Case structure should be implemented as early as pogsible in the

hd coefitinued throughout the In-service phase. Suggested templates for the Pla
illustrated in Appendix B and described in more detall later in this section.

h and Case

5.1 Relia

bility Analysis Tasks

Software reliability analysis tasks are defined within the context of achieving overall system reliability.
The context for system reliability and the software reliability tasks presented in the following subsections
is consistent with references [JA1000] and [JA1000-1]. The reliability analysis tasks are conducted at
various points throughout the product life cycle phases depending on the iteration of the product design,

changes to

requirements, and the support concept.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 34 of 176

A software reliability program should include management tasks such as: life cycle standard process
standard (C.4.3) to define the overall software/quality engineering activities; requirements management
(C.4.5) to elicit, analyze, document, and manage changes to the customer requirements and any derived
requirements; risk management (C.4.6) to balance trade-offs among reliability cost, schedule, and
performance; process assessment (C.4.4) to determine at milestone points whether processes, methods
and techniques are effective and whether reliability goals appear to be achievable/achieved; configuration
management (C.4.1) to control analysis results and reliability case evidence throughout the life cycle; and
FRACAS (C.4.2) to ensure appropriate reliability data collection, analysis, and root cause can be

conducted.

5.1.1

DETERMINE CUSTOMER REQUIREMENTS

Determining
operational
levels, and
generally o
as necessa
5.1.1.1 E

Customer-s
requiremen

authority ane also required, then the dialogue should also invelvg the certification authority.

aspect of ir
reliability gq
mean?), an

Typical me

customer requirements requires customer-supplier negotiations, identificat
use profiles, definition of precisely what reliability means in terms of failures ar
defining in-service conditions of use. Determining customer requirements'analys
tcur during the Concept and Feasibility phase with iteration across all sther life ¢y
[y to update and manage changes to the requirements.

stablish Customer-Supplier Dialogue

upplier dialogue can be established through several activities'that are a normal pa
s elicitation, analysis, and documentation. If certification and approval by a

terest for this task is to determine the Goals for.software reliability in the contex|
als, what specific software reliability questionsiare to be answered (e.g., what dg
H precisely what type of evidence would be suijtable for answering those questions.

question-metric (C.1.6), formal scenario analysis<(C.1.5), and various types of customer s

interactions
51.1.2 Id

One of the

intended to clarify information proyided by the customer and/or the supplier.
Jentify Operational Conditions(of Use

key activities of a reliability program is to determine the profiles of the product's

with their

obabilities of occurrence.

use. For s%ftware this involves-determining the complete set of operations (major system log

scenario a
interactions

alysis (C.1.5),wreliability bench marking (C.3.8) in combination with customer s
with operational personnel.

hods/techniques that might be used ihelude: quality function deployment (C.1.11

on of the
d criticality
s tasks will
cle phases

t of system
Certification
The key
| of system
es “failure”

), goal-

Lirveys and

operational
ical tasks)

Typical methods/techniques that might be used inclyide: formal

Lirveys and

5.1.1.3 [Define Jn=Service Conditions of Support
It is important-to understand the condltlons under WhICh the soﬂware is to be supported and how the
support (e.dg- F F e reliability

program. The references [JA1004]

addressing

[JA1005] and [JA1006] prowde a comprehensive a
software support and supportability.

pproach to

In addition, typical methods/techniques that might be

used for software reliability aspects of support include: quality function deployment (C.1.11), formal
scenario analysis (C.1.5), reliability bench marking (C.3.8), and various types of using/support
organization surveys and interactions intended to clarify information provided by the customer and/or the
supplier.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 35 of 176

51.14

Establish Metrics: Goals, Assumptions and Claims, and Expected Evidence

Quantitative and qualitative measures of success need to be established as early as possible. These
measures may vary over time as the requirements stabilize and the design is realized. Quantitative
software reliability measures such as expected failure rate at delivery must be allocated from system
reliability measures. Other quantitative software reliability measures such as defect removal efficiency or
fault density must be derived from an understanding of the target failure rate as well as historical data.
Qualitative measures need to be defined in terms of an iteration of demonstrated attention to lack of
defects in the software specifications, architectural design, and code implementation. Evidence of quality
management and engineering practices may be included in the qualitative measures. The negotiation
and selection of these measures must be done very jUdICIOLIS|y Every measure must have a definite

purpose in ounterproductive. The
evidence ahd assomated measures will depend on the type of system For example, possible failure
measures df interest are illustrated in Table 5.
TABLE 5—EXAMPLE RELIABILITY FAILURE MEASURES BY APPLICATION TYRE
Metric Example Applicability
Failure Ol Demand 0.001 = 1 out of 1,000 service | Transaction systems
requests results in a failure e.g., ATM'¢r data communica]ion switch
Rate gf Failure | 0.002 =» 2 failures are likely in | Periedically operating systemt
Occurrende 1,000 operational time units e g/, CAD system, flight simulgtor, office
automation software
Mean Time to Assist 500 =» the time between assists'is | Production/manufacturing sysfems
500 time units e.g., Microelectronics control goftware
Rate of Agsists 0.002 = 2 assists are_likely in
1000 operational time upits
Mean Time to Failure | 1,800 = the timexbetween failures | Continuously operating systems
is 1,800 time units e.g., Nuclear reactor control system, life
support system
Operational 0.999 =» ‘the software is available | Continuously operating systems
Availability for 999out of 1,000 time units. e.g., Nuclear reactor control system, life
support system
Typical methods/technigues that might be used include: quality function deployment (C.1.11), goal-
question-metric (C.1'6), formal scenario analysis (C.1.5), reliability allocation (C.1.12), religbility block
diagrams ({©.1.13),\six sigma (C.1.16), SRE (C.1.20), statistical analysis (C.1.21), coverage analysis
(C.3.3), dynamic-tést methods (C.3.4), formal in-process reviews (C.3.5), reliability estimatign modeling
(C.3.9), and ptacess assessment (C.4.4).

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 36 of 176

5.1.1.5 Develop Plan

Once reliability requirements are reasonably understood through customer-supplier negotiation, the initial
plan of reliability analysis tasks can be established. This plan may include tasks already completed or in
progress, such as those tasks associated with determining customer requirements. The plan should be a
documentation of the agreed-upon claims and evidence along with the selected analysis, design, and
verification tasks that will be conducted. The plan should be approved by the customer and certification
authority as appropriate. The Software Reliability Plan template illustrated in Appendix B provides an
indication of information that might be included in the plan. Potential methods/techniques to support the
task activities are outlined in Appendix C. These methods/techniques do not encompass all that exist.
There are existing methods/technlques not mentloned in the appendlx and new ones being developed
ild still provide

a valid fra

and custom

51.16 [

The collectjon of software reliability evidence created during the pre-development life cyc

should be

illustrated in Appendix B is an example format for information that might b&lincluded in the cas

for more gu

512 MEe

Meeting cy

dynamic a
continual a
evidence.

production |i
the operati
updated so

includes th’Eplanned reliability tasks, including interactiomwith systems engineering; conduct g

5121 [

One of the
within a w

practices

ework for selectlng the most appropnate methods/technlques dependmg on the
er requirements.

ocument Pre-Development Case Evidence

Hocumented as the initial software reliability case. The Software’ Reliability Cas
delines on the case documentation.
ET CUSTOMER REQUIREMENTS

stomer requirements requires definition of an\appropriate software life cycle

application

e activities
e template
e. Seeb.?2

model that
f static and

lysis tasks with results reporting, performance of design, implementation, and te

Meeting customer requirements tasks typically are the focus of the devel

t activities;

essment and management of reliabilitytrisk; and documentation of the developmient case of

ment and

ife cycle phase, but may be used during the prototyping of design concepts as wgll as during

n phase to show requirements are still being met and as part of the support activi
ware still satisfies the requirefments.

efine Life Cycle Model and Interaction with System Engineering

principles of this-guideline document is that good software engineering practices|
b|l-defined life «cycle model will provide qualitative and quantitative evidence d

ith fewer(delivered defects. Quantitative evidence can be provided in the form

software riiiability. Qualitative evidence can be provided in the form of statistical correlation

failures as

bserved-in test results or in-service FRACAS (C.4.2) records.

ies to show

embedded
f improved
bf specified
of reduced

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 37 of 176

The software engineering model should be an integrated part of the overall system engineering
approach. System reliability activities will help define the scope of the software reliability program and its
integration within the system/software engineering model. Management techniques of particular interest
include: tailoring a life cycle model from appropriate life cycle standards (C.4.3); use of requirements
management (C.4.5) and risk management (C.4.6) to manage an integrated approach to failure
prevention, detection, removal, and mitigation; and process assessment (C.4.4) to identify system
engineering areas of improvement. Other techniques that can be leveraged with system engineering
management might include: common cause failure analysis (C.1.2), hazard analysis (C.1.7), probabilistic
methods (C.1.9), probabilistic testing {C.3.4), reliability block diagrams (C.1.13), reliability prediction
modeling (C.1.14), six sigma (C.1.16), software FMECA (C.1.18), software FTA (C.1.19), statistical
analysis (C.1.21), reliability allocation (C.1.12), reliability bench marking (C.3.8), and reliability estimation
modeling (C_3 9)

5.1.2.2 Design Reliable Solution

It is importgnt to design software with the specific intent to be reliable. This requires-considgrable study
and analysis of architectural options and translation of the options into a detailed design specification.
The design of the selected architectural option should make it more efficient to demonstrate that
requiremengs are satisfied or still satisfied if changes are made. Reliable architectural degigns target
characterisiics of simplicity, modularity, and cohesion to facilitate the prevéntion, detection, rgmoval, and
mitigation of errors, faults, and failures of the software. Adopting an architecture and detailed|design that
includes inferface verification methods (static and dynamic) facilitates defect prevention, identification,
mitigation, and removal during both development and support aclivities. Software language sglections to
support imglementation of such architectural design principles is an important consideration fand should
be done dufing design in order to enable a seamless transition to implementation, operation, aind support.
The languape decision is a fundamental design decision;that will affect production, testing, tiaining, and
support. Lhanguage implementation features to facilitate reliable solutions will be briefly d|scussed in
51.2.3.

Some of the techniques and methods that facilitate obtaining a reliable architectural design include:
formal scepario analysis (C.1.5), reliability~ prediction modeling (C.1.14), response timg, memory,
constraint tnalysis (C.1.15), design byCcontract (C.2.1), engineering process maturity (¢.4.4), fault
tolerant degign (C.2.2), information hiding (C.2.4), mistake/error proofing (C.2.5), reliability allocation
(C.1.12), rgquirements analysis and traceability (C.4.5), boundary value analysis {C.3.1),| cleanroom
(C.3.2), peer reviews (C.3.7)and formal in-process reviews (C.3.5). When safety/seclurity-critical
requiremenjs are important;-techniques and methods that complement reliability assurange include:
hazard anglysis (C.1.7), Retri nets (C.2.6), software FMECA (C.1.18), software FTA (C.1[19), formal
methods/laiguages (C2.3), and 14 (C.2.4). Further discussion of safety and security considefations is in
6.2.

Nearly all of the-Analysis and Design, and many of the Verification methods/techniques listed in Appendix
C are possjbleyselections for this part of a Software Reliability Plan. Many of the methods{techniques
overlap or work Th combination with other methods/techniques. poT the Selections to
achieve a cost-effective reliability program.

mportar O [allO

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 38 of 176

5.1.2.3 Implement Reliable Solution

The process of implementing a design consists of translating the detailed design information into a
software code form and then verifying that the implementation satisfies the design, and ultimately the
specified requirements. To accomplish this it is necessary to maintain traceability of requirements (C.4.5)
throughout the entire software life cycle process. Typical life cycle activities of coding, unit testing,
analyzing various coverage measures, and conducting reviews should include attention to reliability-
specific methods and techniques. Operational and support procedures should be developed to ensure
software is reliably loaded, initialized, initiated and, as appropriate, replaced during field use.

The implementation may vary depending on the target language, operational environment, and
executable medium. Reference [XTALKO3] contains several articles that describe languages features,
language splection, and implementation principles that may assist or hinder a reliable, safe, land secure
solution. I particular, for most of the techniques discussed in Appendix C the language)s¢lection can
facilitate ofl hinder the use of the technique. In some cases, the language completely [or partially
implementd the technique. Language features such as strong type checking, assertion chgcks, formal
exception handling, modularity constructs, compiler validation, and multiple platform implementations
facilitate and/or implement such design techniques as: design by contract (C.2,1), degraded mode/fault
tolerant capabilities (C.2.2), formal methods/languages (C.2.3), 14 (C.24)”mistake prooflng (C.2.5),
requirements analysis and traceability (C.4.5), and nearly all of thé{verification techniques (C.3)
appropriatel for the lower level verification activities. In addition, these-implementation langudge features

and a supp
Petri nets
time/memo
reliability er

If the softh

hardware (
of designs,
integrated

requiremen

The bottom
intent. It is
validation, §

prt system of robust automated tools can greatly aid keylreliability analysis techniq

(C.2.86), probabilistic methods and risk assessment (C.1.9 and C.4.6)
ry/constraint analysis (C.1.15), software FMECA+(C.1.18), software FTA (C.1.14
gineering (C.1.20) and statistical analysis (C.1.21).

.g., hardware description language with'ecommercial tools for model checking and
fabrication technology, built-in testsi\prfoduction and acceptance tests) techniqu
ps well to provide evidence of meeting reliable functional, electrical, and en
[s.

line is to implement a soffware solution that is verified at the lowest levels agains
also important that the ‘implementation provides features to assist the analysis,
ind continued evaluatien that demonstrates the software meets its customers' requ

es such as
response
), software

re is implemented in hardware, such as Application Specific Integrated Circuits (ASICs), then

verification
bs must be
ironmental

the design
verification,
Irements.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 39 of 176

5.1.2.4 Verfy and Validate Solution is Reliable

Once the software is implemented and lower level verification has been achieved, it is important to verify
and validate that the software solution interfaces with a representative operational system environment as
required and expected. This involves integration and system testing, use of operational profiles,
coverage analysis within the scope of the operational profiles, and specific reviews to ensure any special
cases (such as non-reproducible hardware error processing or safety/security functions) are adequately
verified. Validation of execution results against experimental data or known historical and/or operational
data is an important activity. Software reliability prediction and estimation provide key decision
information and facilitate identification of risks and appropriate risk mitigation strategies. All the
verification techniques (C.3) are candidates for use, but those of particular importance include: boundary
value analysis (C.3.1), coverage analysis {C.3.3). multiple testing technigues (C.3.4). software reliability
estimation modeling (C.3.9), and software reliability prediction modeling (C.1.14). These|verification
technigues [provide data for analyses critical to understanding the reliability of the software component as
well as the pystem.

5.1.25 ssess and Manage Reliability Risk

The risk mhanagement (C.4.6) approach should include methods tohassess how we]l reliability
requirements are being achieved throughout the development (and) support) phaseqg. Typical
methods/teghniques such as system/software FMECA (C.1.18) and: system/software FTA (C.1.19)
establish potential high risk areas. Methods/techniques such as réliability prediction modeling (C.1.14),
reliability egtimation modeling (C.3.9), and the numerous static\ahd dynamic testing methgds provide
inputs to fthe risk assessment. Methods/techniques sstich as probabilistic methogls (C.1.9),
probability/geliability-based risk assessment (C.4.6), and statjstical analysis (C.1.21) provide|confidence
measures that support risk assessments. More comprehensive software reliability program|techniques
such as SHE (C.1.20) in conjunction with the use of formal scenario analysis/operational prgfiles C.1.5)
provide a fiindamental process within which most ofithe above technigues can be integrated to assess
and managg reliability risk.

5.1.2.6 DQocument Development Case Evidence
The collection of software reliability evidence created during the development life cycle activjties should
be documented and appended to the initial software reliability case defined in 5.1.1.6. THe Software
Reliability Case template illustrated in Appendix B is an example format for information that might be
included in the case. See 5.2-for more guidelines on the case documentation.

51.3 DETONSTRATE CUSTOMER REQUIREMENTS

Demonstra
qualificatior

ing that>customer requirements have been met involves the more formal |aspects of
of thé-product and/or processes for customer and/or certification acceptance; ¢stablishing
trols to ensure reliability requirements can be sustained; transitioning the softwarg product to

T - T = - i ity to pursue
continuous improvement is established; establishing a sustaining data collection capability to track
failures and other pertinent reliability information; and documenting the post-development software
reliability case for ultimate delivery to the customer support organization. Demonstrating customer
requirements are satisfied is a focus of post-production and delivery for In-Service support, but selected
demonstration activities may occur throughout the life cycle.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 40 of 176

5.1.3.1

Qualify/Certify the Product and Process

The software reliability case should provide the required evidence that the software product, and the life

cycle processes used to produce the product, has met all customer reliability requirements.

The

complete set of verification and validation evidence, of which the software reliability case is potentially a
critical subset, is required for complete product qualification and certification per the certification authority

requirements.

Evidence and perhaps specific demonstrations that the software product satisfies the

customer operational scenarios/profiles within a representative system operational environment is a
critical part of the qualification and certification activities.

5.1.3.2 Establish Process Controls

The qualifig
(C.4.1). TH
artifacts sud

is system includes: (1) complete identification of the software product (inelud

for controlling failure information, change requests, and traceability for software produet versig

a transition

and migration process for controlling distribution of the software product from the

the customér. All of this would be part of a more comprehensive software support concept i

software re

5133 T
The actual

(initial versi
plan. Thig
software su
during field
support con
SFMEA (C
(C.1.5) to ig

ability plan and case construct would be sustained as the software-product is mod
ransition to Operational Environment

ransition of the software product from the supplier tojthe customer's operational g
bn or subsequent updated versions) should done in accordance with a well-defing

pport agency as well as training on what is required to sustain the software reliabil
cept. Support tasks may be a root cause.for failures that should be considered a

1.18) or SFTA (C.1.19).
lentify potential activities that may-have a higher risk of affecting the operationa

software, siich as the field loading of the software. See references [JA1004], [JA1005], and |

more inform

5134 T
The human
personnel W
associated

ation on software supportability'and support scenarios.
rain End-Users, Operations and Support Staff
operators, users-and support staff are an important component of a reliable syst

ill generally reguire training on the proper use of the system, including any interfac
software product(s). The software reliability program should include activities to

training red
materials,
software. T
implement
customer,

nd as<appropriate, train those personnel who might affect the correct oper
is training program should be developed as part of the customer requirements
concurrently with the software product, improved through prototype interactio

life cycle

d software product must be controlled through a formal configuration managen-Fnt system
in

h as requirements, design, implementation, test, build); (2) a change management capability

ns; and (3)
supplier to
n which the
fied.

nvironment
d migration

plan would include the transition of the software reliability plan/case informdtion to the

ty program

installation, operational testing and use, and logistic functions that are part of the software

5 part of an

Support tasks may require their own Formal Scenario Analysis

use of the
IA1006] for

bm. These
es with the
dentify any

uirementg,\analyze the most effective presentation method, develop approprﬁte training

ion of the
hegotiation,
ns with the

updated/conducted as necessary by the support agency.

vities, and

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 41 of 176

5.1.3.56 Pursue Continuous Improvement

The techniques of customer feedback/surveys for lessons learned, quality metrics (C.1.6 and C.1.11),
common cause analysis (C.1.2), reliability estimation (C.3.9), reliability prediction (C.1.14), reliability-
based risk assessment (C.4.6), and many others provide valuable feedback for root cause analysis

(C.3.10) and general continuous improvement.

Comprehensive management techniques such as

process assessment {C.4.4) and engineering process maturity provide well-defined methods for pursuing
continuous improvement. Software reliability case evidence is a primary source for establishing baseline

measures and improvement objectives.

The software reliability program is well-suited

improvement goals and whether they have been achieved.

5.1.3.6 Establish Data Collection and Reporting

to tracking

Formal data collection and reporting should be part of a systems approach typically charact
Failure Reporting and Corrective Action System (FRACAS), see C.4.2.
concepts and existing data repositories are briefly discussed as a special consideration’in Sec

5137 [

The collect
related to

development software reliability case.

reliability cs
customer s
Appendix B
guidelines ¢

5.2 Reliapility Case Documentation

The softwa
provide a ¢
information
presented i
consists of
requiremen
conclusiong
(1) direct e
suitability o
outline and
capability.

Additional suggestions for reliability case information specific to life cycle phases is ¢

reference [}

Suggested/dat

ocument Post-Development Case Evidence for In-Service Use

on of software reliability evidence created during the post-dévelopment life cyc
customer acceptance and demonstrated capability should be documented as
This case information should be appended to th
ise defined in 5.1.2.6 as the initial In-Service software reliability case and deliv
pport organization for sustained use. The Software Reliability Case template i
is an example format for information that might*be included in the case. See 5
n the case documentation.

e reliability case captures the assumptions, claims, arguments, and evidence n¢
onvincing argument that a software product has a specified reliability. This o
referred to as the Software (Reliability Case, must be accurate, current, and co

six components: system context description; software reliability goals, obje
s; assumptions and:-claims; evidence and reasoned arguments to support
/ recommendations; and certification records. There are essentially two types @
aluation of the achieved reliability of the software products, and (2) evidence of
the software ‘engineering process. See Appendix B for a sample software reliabi
FRACAS~(C.4.2) for a discussion of case interface with a data collection
This sectioh provides an overview of the software reliability case as illustrated i

EES0042-3].

erized as a
b reporting
ion Q.

e activities

the post-
e software
ered to the
lustrated in
.2 for more

bcessary to
ollection of
mplete and

 a convincing manner in grder to obtain sign-off by the customer and/or certifying authority. It

Ctives, and
he claims;
f evidence:
he general
ity case file
nd storage

Figure 4.
bntained in

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 42 of 176

521 Sy

The system description should provide a context for understanding the software component(
em. The description should briefly include the: system’s physical equipment chTracteristics;
1

to the syst

system’s physical boundary such as through block diagrams;'system’s primary role or func

secondary
wartime m

with the inputs, outputs, and services the softwarg, provides to the system; configuration

system/sof]
to operate

each of sygtem’s role or mission profiles.
5.2.2 GgaLs, OBJECTIVES, AND REQUIREMENTS

The information in the software.reliability case file must correlate with the specified softwe

requirements. Hence, the software reliability goals, objectives, and specific requirementt

stated first

requirements were derived and apportioned to software should be described. The relations
the system
reliability r
criteria shq
requireme

! Evidence '

Previous Usage |\ Assumptions
1 a

(| 8 a8 Analyses ;

2.8 -

| &S T i

Mg I]:> Testing/Trials : Reasoned
i g = i

= H - - ' Arguments
i 2 % Simulations 5

1 (])

: %B P : /i\
g Calcuatons ||

i = - / Claims

! Expert Opinion !

FIGURE 4—RELIABILITY CASE: CLAIMS BASED ON EVIDENCE

STEM CONTEXT DESCRIPTION

roles in order to provide a view of its operational criticality — e.g., typical pes
|ssion profiles; system’s operating enviropments; interfaces with any equipmen

ware for which the case evidence applies; personnel skill levels and training that
and/or maintain the equipment/software; and the maintenance policy/support ¢

for the system and individual partitions, as appropriate. The process by which t

and software reliability requirements should be explained. Any regulatory and/o
bquirements should be highlighted. In addition, the agreed upon validation and
uld be hoted. Any risk areas associated with the system/software satisfying t

) in relation

on and any
cetime and
associated
build of the
hre required
oncepts for

re reliability
should be
e reliability
hip between
contractual
certification
ne reliability
Based on

ts should be |dent|f|ed along with how these risks WI|| be, or have been managed.

ements, the

strategy adopted to meet the reqmrements and prowde the necessary assurance should be summarized.
This strategy is justification for the reliability program activities and the identification of the success
criteria for these activities.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 43 of 176

52.3 ASSUMPTIONS AND CLAIMS

All assumptions, such as citing existing systems or research, and claims made relative to achievement
and assessment of the software reliability goals and objectives should be clearly stated and justified. A
good record in the past is not sufficient as evidence of good performance to be expected in an
environment that is modified even slightly. Any change in the physical, logical, or data environment must

be taken into account.

5.2.4 EVIDENCE

Three categories of evidence should be collected

iteratively throughout the life

cycle and

included/referenced in the software reliability case file: process activities, product characteristics, and

qualification)s of people and resources that demonstrate achievement of software reliability ¢euirements.

This inforrhation can be summarized in terms of activities conducted, techniques ased|during the

activities, ahd measures to satisfy claims across process, product, and resources and réliability control

areas as illystrated in Table 6:

a. Fault Elimination—Requirements, design, implementation and test prevention/detection/removal/miti-
gation ¢f defects/faults;

b. Failure [Containment—Failure impact limitation; failure isolation ang\recovery; fault toleranf, degraded
mode operations; operational profile coverage testing & analysisy and

c. Failure| Rate Estimation—Failure rate prediction from.dévelopment parameters; FRACAS data
collectign; failure data analysis & reliability estimation¢medeling; statistical analysis and probabilistic
methods; failure/impact reliability risk assessment

Adequacy ¢f evidence provided for each activity shotld be evaluated. Professional judgment is required

to evaluate| the evidence presented. A checklist¢adapted from [DEFS0042-3] is indicated pelow as a

guide to some of the possible evaluation areas:

a. stated gbjectives for the activity are clearly defined;

b. activity |is systematic and complete;

c. activity peen undertaken.at.a'time that will allow influence on the design;

d. usage profile and enyironmental constraints have been considered for the activity;

e. physicdl and fupetional boundaries of the activity have been defined,;

f. any aspumaptions are defined (e.g., inputs from other systems or services), and are rgalistic and
reason ;

g. |ustification is provided for the activity method/technique used and is reasonable;

h. description is provided of who (e.g., user, maintainer, designer etc) was consulted during the activity

and these personnel and level of consultation is reasonable;

i. activity

recommendations are clearly defined and reascnable;

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 44 of 176

j. documentary evidence indicates that the recommendations have been implemented; and

k. activity results have been progressively updated to reflect the latest design and are being used as an
input to design reviews.

TABLE 6—EXAMPLE FORMAT FOR SUMMARY OF SOFTWARE RELIABILITY CASE EVIDENCE

System:

Intended Use/Environment:

B Diata:
THRSEHET

Reliability Control Product Evidence/ Process Evidence/ Resource Eviderice/
Measure Safeguards Safeguards Safeguards

Fault - -
Elimination

Failure
containment

Failure rate
estimation

5.24.1 PRrocess Activities that Demonstrate Achievement of Software Reliability Goals

A descriptipn of the selected life cycle model and development method should be provided, |ncluding an
explanation) of how this model.and method contribute(d) to the attainment and assessment |of reliability
goals throyghout the life cyele-phases. Specific life cycle activities that were used to assTs software
reliability should be called out, such as performing iterative risk analyses or using static analysis
techniques| An assessment should be made of the:

o software reliability design analysis;

e soffwate teliability code analysis;

* soffware reliability change analysis; and

+ effecliveness of validation and veriticalion activilies.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 45 of 176

Suspected or confirmed reliability problems should be documented, along with the current status of their
resolution. Results from analyzing and interpreting process metrics should also be discussed.

5.2.4.2 Product Characteristics that Demonstrate Achievement of Software Reliability Goals

A description of the design features that contribute to enhanced reliability should be provided, such as:
design by contract (C.2.1), 14 (C.2.4), and system/software fault tolerance design (C.2.2). This
description should explain how the likelihood of common cause failures (C.1.2) has been eliminated or
reduced, through use of techniques such as system/software FMECA (C.1.18) and system/software FTA
(C.1.19). In addition, a discussion of whether the product: (1) operates in a demand-mode or
continuous-mode environment; (2) was designed to fail safe or fail operational; and (3) contains any

monitoring and/or error detection and correction features should be included. The results o

dynamic tes
control meg
well-planne
software. [
evidence th
5243 (
G

An explang
appropriate
hardware a
provided. R

static and

it analyses should be recorded, along with an analysis of the effectiveness of/tl
sures. Results from analyzing and interpreting product metrics should also be dis
1 dynamic test program is an essential part of providing confidence .inthe 1
ynamic testing evidence (C.3.4) should be provided along with coveragejanalysis
at requirements have been traced (C.4.5) to design, implementation, and dynamic 1

ualifications of People and Resources that Demonstrate Achievement of Software
oals
for a project of this reliability level should be provided! Likewise, a justification

esults from analyzing and interpreting people/resource metrics should also be disc

52,5 CONCLUSIONS/RECOMMENDATIONS

The conclu
accumulate
what level d
its next milg
recommend
assurance

constrain th
qualification

52.6 CER

An accurat

1 to date, such as which software-reliability requirements have/have not been m
f confidence. In interim issues, it“should recommend whether the project should
stone, or what further work isequired to enable the project to progress. In additio

what activities should be,'conducted in the future in order to generate the

e reliability
cussed. A
eliability of
C.3.3)and
ests.

Reliability

tion of why the education, experience, and certification of the professiona] staff are

of why the

hd software platforms, including automated tools; are appropriate for this projec{ should be

ussed.

sions/recommendations should summar¥ize the key information presented in case evidence

et and with
proceed to
n, it should
necessary

that the reliability requirements will be satisfied and what residual risks/limitItions may

e results. For operatignal use, recommendations should be provided regarding t
certification status:

TIFICATION RECORDS

e and, ¢omplete chronological history of all certification-specific information an

should be i
typically d
Administrati
information

cluded-or referenced in the software reliability case file. The format and precise
pendent on the certification authority. An example of the type of Federn

e software

d activities
content is
al Aviation

is provided in Appendix E.

tertification

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012 Page 46 of 176

6. Special Considerations

A software
discussed in

reliability program may involve a variety of special considerations, some of which are
this section.

6.1 Tailoring the Software Reliability Program

A layered use of standards and guidelines with appropriate tailoring of activities and techniques is the
most effective approach to establishing a software reliability program. Within each of the layers, such as

illustrated in Figure 5, there are opportunities to tailor the activities to best suit the application. This
tailored set of activities is negotiated as part of the initial negotiation with the customer to determine
system/software reliability requirements
Layer Example
Techniques Techniques
A AN
4 4
System Surety Software Surety JA1002
Standards and Guidelines Standards and Guidelines | JA1003
A A
N N
Genera System Engineering General"Software Engineering IHEE
Standards and Guidelines Standards and Guidelines 14207
A A
R <€ o
Genergl System Engineering Process General ‘Software Engineering Process clMMI
Assesgment Standards and Guidelin Assessment Standards and Guidelines
FIGURE 5—LAYERED APPROACH TO SOFTWARE RELIABILITY TAILORING

The tailoring of a software reliability (program for a given project will be the focus of implementing the

"Determine

Customer Requirements" reliability analysis task. The examples in Appendix D and Appendix

E provide $ome instances of tailoring the analysis tasks. Some specific tailoring considgrations are
discussed in the following subsections. Special tailoring considerations for application vaijiations and

complexity,

criticality levels, technique selection, safety and security, Off-The-Shelf softwarg¢, and data

collection apd reporting.are'briefly discussed in 6.2, 6.3, and 6.4.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 47 of 176

6.1.1 APPLICATION VARIATIONS AND COMPLEXITY

There are many different applications for which the drivers for tailoring will vary. Such applications
include military, aerospace, motor vehicle, railway, medical equipment, pharmaceutical, and nuclear
industry. Regulations (requirements specific to the domain) are typically developed and managed by an
application domain organization. The application regulations will drive the specific system/software
engineering processes, verification and validation activities, and in general the reliability, safety, and
security techniques that provide the required assurance. Within the context of the application domain
regulations, the required integrity level and complexity of the system/software will determine which
reliability techniques will be most appropriate to provide the required level of assurance.

driven by gpvernment budget reviews and military allocations. The United States Departiment|of Defense
military acquisition process also varies from other country's (e.g., United Kingdom Ministry ¢f Defence,

Canadian

industry-spe

reliability/s.
is to be as
analysis, a
system ac
[JA1000] an
program st

Industry sy

requirements for time-to-market and profit.

system/soft
aerospace,
liability can
may have &

1. Federa

2. Nuclea

3. Her Majesty's Railway Inspectorate for the United Kingdom railway systems; and

4. Fooda

ational Defense) military acquisition. Some military/federal regulations)will appl
cific standards and guidelines. The acquisition system procurement process

fety/security plan and case information to be generated as a Key -Rerformance Pa
sured. In addition, the requirement should be for acquisition ¢ustomer-supplier
d demenstrated assurance evidence throughout the acquisiticn and support life
quisition this is directly supported by the system reliability program standar

ndard/guideline, [JA1002] and this JA1003 guide.

stems will be driven by the full range of custemer priorities and the enterp
An additional driver is the potential for litig
ware product reliability/warranty does nottheet expectations. Industry applicatio
railway, medical, and nuclear energy have significant safety and security concs
fall on the manufacturer, supplier, distributors, or certifier of products. Such syster
certification authority provide a reguired oversight function:
Aviation Administration for cgmmercial airlines;

Regulatory Commissiori for the nuclear power industry;

nd Drug Administration for pharmaceutical equipment and processes.

as well as
ust require
ameter If it
hegotiation,
cycle. For
H/guideline,

d [JA1000-1]. For the software acquisition this is directly supported by the softwafe reliability

ise market
hition if the
ns such as
rms. Legal
hs/software

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 48 of 176

Each of these certification authorities will have source regulations, evaluation and assessment
procedures, and best practice recommendations that will need to be integrated into the system/software
reliability plan/case framework. Associated software will need to apply techniques such as hazard
analysis {C.1.7), software FMECA (C.1.18), software FTA (C.1.19), |4 principles {C.2.4), and perhaps
even formal methods and languages (C.2.3) to provide adequate assurance that the systems are safe
and reliable. When a system/software has significant reliability, safety, or security concerns independent
evaluations, assessments, and audits may be part of the required oversight activities. A partial example
of establishing a software reliability program for an aerospace application within the requirements of the
Federal Aviation Administration is illustrated in Appendix E.

A system/software product may be very complex.
problem being

ThIS complexny can orlglnate in the nature of the
onents with

e used. In

turn, this cgmplexity manifests itself in the number of system/software requirements, architecture design

planned angl executed software reliability program should be tailored to reduce thesé)complexi
6.1.2 CRIMCALTY LEVELS

There are
itself may b

any different concepts for criticality levels related to system/software reliability,
B "severity”, "integrity”, "risk", or just "criticality" level. In almost all cases the critic

ired. A well-

ies.

The term
ality level is

a qualitativg ordered scale. The usual association with the criticality/level is that the rigor of the reliability

evidence required increases with the criticality levels.
reliability/sa
will be attgined. Although there are standards and guidelines (e.g., [DO178B]) that sp
activities ane to be conducted to satisfy the desired criticality level, such activities are sti
tailoring prgcess involving the customer and supplier, and as appropriate the certification auth
the specifid task to "Determine Customer Requirements" would involve the specific definit
failures are| of concern, the criticality levels associated with those failures, and what specif
tasks must pe conducted to provide the required confidence that such failures will not occur.

Specific system/software engin

bering and

ety-specific activities are defined so there is acceptable assurance the desired crificality level

ecify which
| part of a
prity. Thus,
on of what
jc reliability

For examplE, criticality levels could be.based on: level of financial cost impact to the custoner, level of

functional i
frequency 4

pact to the customer; reliability/failure rate level; or risk level as a qualitative combination of
f failure and impact of failure for each failure category. What is certain is thaf additional

reliability cgncerns of safety andfor security will increase the level of rigor required by the reliability

program. The customer/supplier negotiations are critical to establishing the desired criticalit

/ levels. A

software reljability criticality.level matrix with example software applications is illustrated in Table 7.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 49 of 176
TABLE 7—EXAMPLE SOFTWARE RELIABILITY CRITICALITY MATRIX
Nuclear Weapon/
4 Catastrophic Safety of Flight
Nuclear Energy
Hazardous/Severe
Medical Radiation
Major Treatment
Information Management

Minor
Hazard Level 10" 10° 10° 10"
Failure Ratg >

Table 7 is on
hazard level

At the “upper
high (e.g., les
For a given
depends on
estimate. As
range approx
range would

If the reliabil

take more than 11.4 years of continuous testing-to gather a single data point. A minimum of 2

is required tg
years of testi
is possible, ¢
it may be feq
portion of th
accelerated t
among defec

y meant to be illustrative since within the indicated applications, the desired failur
combination (risk level) may be different than indicated.

" levels of criticality there is the problem of providing sufficient quantitative eviden
s than 10° failure rate) or even ultra high (e.g., less than*10” failure rate) reliability
confidence interval, the uncertainty in the reliability estimate determined fro
the number of samples gathered. The more samples, the smaller the uncertai
an example, for a 95% confidence interval and 20 samples, the reliability estim
imately from 0.70 to 1.60 of the measured@Vverage value. However, for 200 sar
be approximately 0.90 to 1.15 of the average.

ty requirement is high, say, no more‘than 1 failure in 100,000 hours of operatio
achieve the 95% confidence degree of certainty. Hence somewhere in the org

r the software execution.hodrs are significantly less than the system operational h
sible to demonstrate high reliability through testing. In addition, it may be that on

esting techniques.)See the Figure 6 below for an illustration of determining the rg
sample sizegsreliability multiplier, and confidence limits.

b rate and

te of very
systems.
m testing
hty in the
ate would
hples, the

h, it could
D samples
er of 228

hg would be required. However, if large scale parallel independent testing on mulftiple units

burs, then
ly a small

b software is required to have high reliability, and can be so demonstrated uging these

lationship

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 50 of 176

1000 "
I W
|

Caution:

: Curves are

{ only
approximate

500

200

100

50 Confidence Limits
95% =20
99% =30

NUMBER OF FAILURES

L L
L] L]
9
%
°\
8@%

‘._-

0.759 609
RIS VA

!
(=]
n

1.00
1.259

-

1.754
2.00+
2.259
2.50+

MULTIPLIER

FIGURE 6—RELIABILITY CONFIDENCE LIMIDS
6.1.3 TEQGHNIQUE SELECTION

One of the|problems that will need to be resolved by an effective software reliability progrgm is which
technigues to select from the many that exist. There are many techniques illustrated in Appepdix C, and
other existing techniques, and more techniques that will-exist in the future. Selecting which|techniques
will be best|suited for a specific software reliability program will be a key activity of the tailoring|approach.

There are many decision-theory selection metheds to assist in determining which techniqui(s) from a
sample of glternative techniques is more preferable to use. One example is the Pugh selecfion method
(C.1.10). As an example, such a method, might be used in combination with selection critefia such as
defined in [[AIAARO13] or [IEEE1413] dor evaluation of alternative software reliability models. In
[AIAARO13] the following model evaluation criteria are suggested:

1. model predictive validity for accuracy, trend, bias, and noise;

2. ease off measuring modetparameters, including cost and schedule impact;

3. quality pf assumptions in comparison with the real world as well as adaptability to specia] conditions
and enyironments;

4. capabiltytelestimate useful quantities needed by software project personnel;

5. applicability to program evolution and changes in the test and operational environment;
6. simplicity of understanding the concept, data collection, program implementation, and validation; and

7. insensitivity to small differences in input data and parameters without losing responsiveness to
significant differences.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 51 of 176

Given a set of alternative software reliability models, perhaps as recommended in [AIAARO13], the
question to be answered is which one or perhaps hybrid combination of model alternatives would be best
for a specific software reliability program? The Pugh selection method (C.1.10) is one possible selection
approach that could result in greater insight into the software reliability requirements and solutions. Such
results might include a quick review of the many software reliability models and additional hybrid
alternatives, a better understanding of the models, a more objective selection process, and increased
system/software teamwork and communication.

Selection techniques such as the Pugh method using selection criteria such as in [AIAAR013] and/or
[IEEE1413] are valuable in all life cycle phases. These techniques facilitate determining customer
software reliability requirements and establishing an effective set of software reliability activities that will

provide evidence that the customer requirements have been and are continuingto be met

6.1.4 Do

CUMENTATION

Tailoring the documentation to be an effective information resource used throughout the s

cycle is a (
approach tg
form and fo

The basic r
requiremen
met. The
software re
information

For exampl
system reli
Alternatively
and/or log

hallenging task. An effective software reliability program will need.to have a v
documentation. This approach should state what information is to.be captured a
mat.

bquirement in [JA1002] is to document the customer requirements, the activities
s will be met, and the activity evidence and demonstraticons that the requirements|

framework recommended for capturing this information is a software reliabilit

and media formats. There is no "one" way to doqif)

pftware life
vell-defined
5 well as its

0 show the
have been
plan and

iability case. The resulting plan/case documentation may be represented in mahy different

e, the software reliability plan information may be a separate appendix or integra
bbility plan.

Similarly, the software reliability case information may be part of a syste

characterization report that summarizes the case evidence, is presented as part of a

information
base. The
related to a

When ther

system reliability analysis data base may be linked to commercial and industry-s
| the system compon@nts, including the software components.

are significant .safety, security or other surety-related concerns, there will

documentation informationthat has reliability dependencies as well. This documentation sh

ed within a

The plan may be a physical document or an electronic set of information.
, all system/software reliability plan information may be integrated within an ovdrall system
stics plan, perhaps hyperlinked~ electronically from an overall system dogumentation
architecture].

reliability
web-based

system, and references détailed information contained within a system reliability arLaIysis data

ecific data

be specific
ould be an

integrated part of thé specialty engineering and system engineering documentation architegture rather
than isolat extraction
of "safety-specific”/or "security-specific" or more comprehensive "reliability-specific" informgtion. And,

this informgtion,'should be able to be presented in a variety of documentation formats depeinpding on its

use.

separate entities. However, there should be filter mechanisms that allow for th{

One significant software reliability program activity is to define the documentation architecture as related
to the selected software reliability activities and the results of those activities. This documentation
architecture activity should be an on-going part of the software reliability program throughout the software
life cycle. As a minimum there must be software reliability plan information and software reliability case
information, however it is physically or electronically represented, stored, or integrated with other system
information.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 52 of 176

6.2 Safety and Security Considerations

The standards and literature seem to make it clear that, safety, security, and reliability are "different"
attributes of a system, at least in the primary focus of these attributes. Software safety is concerned with
features and procedures that ensure a software product performs predictably under normal and abnormal
conditions. Thereby, the likelihood is minimized of an undesirable event occurring, consequences of any
unplanned event are controlled and contained, and accidental injury, death, destruction of property and/or
damage to the environment is prevented, whether intentional or unintentional. Software security is
concerned with features and procedures that ensure a software product satisfies its requirements for
timely access to authenticated services and for protection from denial of authenticated services. On the
other hand, the “standard” interpretation for software reliability is concerned with the ability to produce
accurate apd consistent results repeatedly under low, normal, and peak loading conditjons in the
intended operational environment. The focus is on operational profiles in the intended,|operational
environmernt.

However, ¢

specified time under specified conditions, the definition of "failure" will determine_the scope

Unless safd
possible to
have a safg
are part of
a reduction

ince software reliability is the probability of failure-free operation of a software pr
ty/security requirements are not part of the requirements specification, it does not
have a reliable system that is not safe and/or secure. Wheréas; it does seem

and/or secure system that is not reliable. It is clear that if safety and/or security re

in the reliability of the software. Thus, it would seem logical to create an interpret

bgram for a
f reliability.
seem to be
possible to
quirements

he software specification, then any failure to satisfy those requirements will be interpreted as

htion where

the reliability level would be dependent upon whether there wergsany safety and/or security requirements.

The combinpation of reliability, safety, and security requirements is sometimes defined as pa

used in the
in referencq

In this guid

nuclear industry, "surety”. Another term for this combination is “dependability”, a
[LITTLEWDOO].

bline document, it is simply acknowlédged that safety and security requirements

activities sp

normal laydring of general software engineering requirements and the more usual reliability re
These safgty/security task activities can" either be included within a software reliability

framework

software security plan/case documentation. Also, such information may be integrated at the s
Hopefully the software design afehitecture facilitates a focused analysis of a small subset of t
product for feither safety or security concerns. The safety and security disciplines provide roby

that are ge
depth treat
Appendix
considerati

Techniques

ecifically targeted to providing evidence that those requirements are satisfied in ad

It of a term

5 described

equire task
Hition to the
huirements.
plan/case

r, if significant enough to a certification effort, as separate software safety plan/case and

erally beyondithe scope of this document. These crucial subjects deserve mu

ment than gan'be described in this document.
L could be)tailored to support safety and security assurance.
bns aresintroduced in this Section.

Some of th

stem level.
he software
st methods
ch more in-

However, many of the techniques listed in

e important

and/or secl

software FMECA (C.1.18);

that are more typically applied to high consequence software specifically to ad

software FTA

ress safety
s (C.1.17);

(C.1.19); independent vulnerability analysis (C.2.4); Petri nets

(C.3); formal methods/languages (C.2.3); and very high system/software capability maturity (C.4.4).

The themes illustrated in Table 8 have been derived from [HERM99] and augmented somewhat to
include the overall aspects of "surety" - encompassing reliability, safety, and security. The themes
provide guidance for integration and tailoring considerations.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 53 of 176

TABLE 8—MAJOR SURETY THEMES

Surety Principle Statement
Integration Software surety is a component of system surety.
Coverage High integrity, high consequence, mission critical systems need to satisfy all

surety requirements. Everyday examples should not be overlooked when
classifying systems as surety-critical. The surety principles of independence,
isolation, inoperability, and incompatibility apply to all systems.

Specialty Special engineering activities are necessary in addition to a well-defined
Engineering software engineering process to produce safe, secure, and reliable software.

Life Cycl|9 Process | To achieve software surety, certain policy, planning, design, analysis, and
verification activities must take place.

Measuregment The achievement of software surety should be measurgdythroughout the
lifecycle by a combination of product, process, and people/fesource metrics,
both quantitative and qualitative.

Resourcg Skills Software surety is an engineering specialty 'that requires spgcialized
knowledge, skills, and experience.

Layered [Standards | A layered approach to standards and guidelines is the most effectivie way to
achieve both software and system surety.

6.2.1 SARETY CONSIDERATIONS

Several stahdards and guidelines such as [DEFS0055], [IEC61508], and [IEC61511-1] provide guidance
for addresging safety considerations, and in paglicular address software safety. Thg reference
[HERRMS99] contains summary descriptions and\.¢omparisons of a wide variety of software|safety and
reliability standards and guidelines including the SAE standards. Publications such as [LEVESON95] and
[FALLA96] provide descriptions of best practices along with application limitations.

In [LEVESOQN95] there is a complete (ife cycle emphasis on what additional software safety management
and technidal activities are needed to provide adequate safety assurance in high consequenge systems.

Some of thg key areas which require safety-specific activities include:

1. Managiphg Safety: The role of management, setting policy, communication channels, setting up a
system|safety organization, place in the organizational structure, documentation;

2. Integrafing the<System and Software Safety Process: General tasks allocated to software;

3. Condudting‘System Hazard Analysis: What it is, how to do it with software components, types of
models i f fritatt i

E] ’ ’) y

4. Conducting Software Hazard Analysis and Requirements Analysis: Extension of system hazard
analysis;

5. Designing for safety;

6. Design of the human-machine interface;

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 54 of 176

7. Verification of Safety: Testing, software fault tree analysis; and
8. Validation of Safety: Use of experimental data in a system context, quantification of uncertainty.

In [FALLA96], a safety policy model is used to specify implementation independent safety objectives.
Policies or objectives must be specified, verified and validated in a demonstrable manner throughout
development, and they form part of a broader safety requirements document. As described in
[FALLA96], the development method for a safety policy model consists of six stages that can easily be

grouped into a safety plan and safety case.

Safety obje
the system
objectives

demonstrat
ensuing sa
encompass
be used as

The safety
safety obje

[Policy creation.

Conceptual model creation.
o f Creating the logical model.

Policy substantiation.
Safety Case Policy animation.

Produce rationale.

FIGURE 7—SAFETY PLAN, CASE, AND POLICY MODEL

Ctives relate to the safe behavior of the system. If thege)objectives are always sati
operation then the system will always be in a safe sfate. The concept is that the
can be defined, verified and validated during>requirements phases, and v
bd during design and subsequent phases up fo delivery. The role of these objecti
ety policy models is to provide key technical criteria for all areas of system dsg
ng the activities involved with design, safety, assessment and management whig
a part of (or be referenced from) a saféty case document.

Ctives and requirements withinSpecified environments is part of a comprehensi

sfied during
e behavior
erified and
es and the
velopment,
h can then

case document could be an intégrated part of the reliability case document in that meeting

e reliability

program. Qr, depending upon the focus of the regulatory certification effort, the reliability cage could be
presented gs part of the safety case. Although the safety policy model may only apply to an igolated part
of the software product that specifically controls the safety functions, the concepts could be agplied to the
more genergl system/software'reliability program.

The SAE Aerospace Inférmation Report 5022 [AIR5022] describes several of the commonly performed
Reliability gnd Safety(R&S) analysis tasks, with emphasis on their inter-relationships and common data
elements.

work effort

specific reli

this integratie

R&S tasks for any component |nclud|ng the software component, can be Ieveraged An example
system/software safety life cycle process is illustrated in Figure 8.

In [SSSHDBK99] there is a good list of techniques and methods in Sections 3 and 4 and Appendices C,

D, and E.
full set of te

Also, some examples of lesson learned experiences are in Appendix F.
chniques/methods in the following areas:

[DEFS0055] has a

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

1. Safety Management: plan, case, analysis, records, reviews, audits

2. Roles and Responsibilities: project, design, V&V, safety auditor, safety engineer

3. Planning Process: QA, documentation, development, risk management, V&V, configuration
management, safety methods, design/coding practices, language, tools, previously

developed/commercial/diverse software; supportability considerations

4. Development Process: development principles, requirement, specification/design/coding, testing/
integration

5. Certification: qualification, acceptance, training

6. In-Servjce/Support: change management, safety re-certification

Page 55 of 176

Syslem Safety Iterate until residual risk is acceptable
Pevelop System Define Safety Hazard Analyses Allocate Safety AssessSafety Verify Safety pnd
Safety and [and Reliability [P and Reliability P andRelizbility Reliability|
Reliability Plans Requirements Targets Abhievement Adequacy
| A
v v 1 i $ } !

Develop Specify Software Software Design Coding Formal Softwarg
[Software Safety — Safety and -9 Development |77 Proof / Static Validatiofy
and Reliability Reliability Analysis Certificatipn

Plans Requirements
Develop Develop 4 Develog
Preliminary I nterim Dynamic Operatiorfl
Software Safety Software Safety Software Sfety
Software Safety Casn Case Analysis Case
y
|terate until all safety requirements are demonstrated

FIGURE\8*-EXAMPLE SYSTEM/SOFTWARE SAFETY LIFE CYCLE PROCESS

6.2.2 SEGURIT-CONSIDERATIONS

Software security includes features and procedures that ensure a software product satisfies its
requirements for timely access to authenticated services and for protection from denial of authenticated
services. Securing information and systems against the full spectrum of threats requires the use of
multiple, overlapping protection layers addressing the people, technology, and operational aspects of
information technology. Thus, security can only be achieved by taking a systems approach, which
includes features and procedures such as physical security and operational security that are outside the
scope of hardware and software.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 56 of 176

Software security features and procedures are an important part of nearly any system security
implementation. By using multiple, overlapping protection layers, the failure or circumvention of any
individual protection layer will not leave the system unprotected. Through user training and awareness,
well-crafted policies and procedures, and redundancy of protection mechanisms, layered protections
enable effective protection of information technology for the purpose of achieving mission objectives.

The reference [NIST800-27] enumerates a set of information technology security principles that have
similar elements as the development method for a safety policy model as presented in [FALLA96] and the
surety themes in Table 8. The principles are summarized in Table 9 organized in accordance with the
associated surety theme. Most of the principles fall within the "coverage" surety theme. In particular, the
security focus on ensuring access control, data integrity, and denial of service involves designing,
implementing, and demonstrating that the system/software product follows the principles of
Independerjce, Isolation, Inoperability, and Incompatibility (I14). Security integrity checks (C.B.7) can be
used to support access control and data integrity as well as run-time component/data) cpnfiguration
compatibility to prevent indirect creation of backdoors and/or viruses. A security plan/case framework to
implement the principles of determining, meeting, and demonstrating customer security requirements can
be applied as part of a scftware security program, or more generally a software reliability/surety program.

TABLE 9—SECURITY PRINCIPLES AND ASSOCIATED SURETY THEME

Surety Theme Security Principle Statement

Life Cycle| Process | Establish a sound security policy as the “foundation” for design.
(Policy)

Layered Standards | Implement tailored system security . measures to meet organizationgl security
goals.

Layered Standards | Where possible, base secunty on open standards for portapility and
interoperability.

Resource Skills Ensure that developers.are trained in how to develop secure software.

Integration Treat security as anlintegral part of the overall system design.

Measurement Reduce risk to(anacceptable level.

Measuremnjent Identify potential trade-offs between reducing risk and increased posts and
decrease'inh other aspects of operational effectiveness.

Coveragel|(14) Clearly” delineate the physical and logical security boundaries goyerned by
associated security policies.

Coverage((14) Assume that external systems are insecure.

Coverage|(14) Implement layered security (ensure no single point of vulnerability).

Coverage l(14) Strive for simplicity

Coverage (14) Design and operate an IT system to limit vulnerability and to be resilient in
response.

Coverage (14) Minimize the system elements to be trusted.

Coverage (14) Implement security through a combination of measures distributed physically and

logically.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012 Page 57 of 176

Surety Theme

Security Principle Statement

Coverage (14)

Limit or contain vulnerabilities.

Coverage (14)

Formulate security measures to address multiple overlapping information
domains.

Coverage (14)

Isolate public access systems from mission critical resources (e.g., data,
processes, etc.).

Coverage (14)

Use boundary mechanisms to separate computing systems and network
infrastructures.

Coverage {4

Coverage((14)

Design and implement audit mechanisms to detect unauthorizéd)dse and to
support incident investigations.

Coverage|((14)

Authenticate users and processes to ensure appropriate access contro| decisions
both within and across domains.

Coverage|(14)

Use unique identities to ensure accountability.

Coverage|((14)

Implement least privilege.

Coverage|(14)

Do not implement unnecessary security mechanisms.

Coverage|((14)

Protect information while being processed, in transit, and in storage.

Coverage|(14)

Develop and exercise contingency:.Qr disaster recovery procedures |to ensure
appropriate availability.

Coverage|((14)

Ensure proper security in the shutdown or disposal of a system.

Coverage|(14)

Protect against all likely classes of “attacks.”

Coverage|(14)

Identify and prevent cammon errors and vulnerabilities.

Specialty Provide assurancé.that the system is, and continues to be, resilient in {he face of
Engineering expected threats!

Specialty Design security to allow for regular adoption of new technology, including a
Engineering secure and logical technology upgrade process.

Specialty Strive-for operational ease of use.

Engineering

Specialty Consider custom products to achieve adequate security.

Engineering

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 58 of 176

6.3 Off-The-Shelf Software and Reuse

Off-The-Shelf (OTS) software includes all software products that are already developed and available,
usable either "as is" or with modification. The most prominent of the OTS software are provided by
commercial vendors, government repositories, or open source resources. Most OTS software products
might be categorized as "Software Of Unknown Pedigree" (SOUP), meaning there is not full and
complete access to the source code, documentation and/or development history. OTS software products
are used every day in the form of operating systems, database systems, network/communication
systems, compilers, module libraries such as for scientific functions, design support tools, and so forth.
The reliability concerns depend on the required integrity level of the application system and the
dependence on the OTS software. Several source documents provide guidance on the use and reuse of
OTS software products, including references [NUREG6421], [NATO96], [NATO97], [JA1005], and
[DEFS0055].

OTS software may be provided as one or more of the following categories:
1. Commgrcial—provided by a commercial supplier and used with no modifications;

2. Commgrcial—provided by a commercial supplier with customer parameter inputs tq tailor the
package for application use;

3. Government—provided by a government agency with the same¢ossibilities as items 1 or 2 above;

4. Industnj—provided by an industry/internal organization partiier (perhaps another organizajion/depart-
ment within a company) with the same possibilities as items 1 or 2 above; and

5. Module| Extraction—subpart of an OTS software.package is extracted for integration jnto a new
application.

The OTS sqgftware may be used in a variety of applications such as:
1. Embeddled in Hardware—Communication data link, programmable array logic;
2. Embeddled as part of a configurable software/hardware system such as a distributed contrpl system;

3. Integrafed as componenis\into a larger system: operating system, relational data base mpnagement
system] graphical users interface (GUI);

4, Stand-dlone Products—Payroll, accounting software, 'shrink-wrapped software' (word-processing,
spreadgheets, games);

5. Standafdto6ls used to support the software development and maintenance process: coeriIers and

COﬂfigU: at;ul LLLLI=1R (=37 =2 R} L=1) It t\.lulo; (=4 Id

6. Software libraries and component-based software engineering products.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 59 of 176
Potential benefits of OTS software include:
1. reduced time-to-market;
2. decreased development costs;
3. possible higher reliability based on wide-spread operational use; and
4. potential for reuse.

There are acquisition policy influences and pressures to provide new and updated system capabilities at

much redu%mﬂ&a@m&ma@pﬂmi@uﬂm&%ﬁm&mMmhasize the
integration and use of OTS products (hardware and software) whenever possible rather thafg

levelop the

new capablities in-house or through contract. There are reliability and supportability~¢opcerns and

potential behefits for this approach. Some of the OTS software concerns include:

1. Functiopality may not meet all requirements or may provide undesirable (functionality that affects
system/software reliability;

2. Faults and other problems with the software product will tend not io6 be made appatdent by the
supplie, hence may affect software reliability;

3. Obsolegcence may be a problem; upgrade releases may be‘frequent and irregular; if upgrades are
required to be integrated for continued supplier suppor, ‘this may have a detrimentgl effect on
reliability and supportability; support for obsolete software products will tend to be very pxpense, if
not impractical;

4. |Integratjon with bespoke (custom) software .and hardware may require special OTH software
wrappels; these wrappers are not always:éasy to develop and may not retain relfability and
supportgbility characteristics of the OTS seftware;

5. Stated ¢onformance to a standard is.fio"guarantee of interoperability;

6. Testing|to validate integrated ‘performance may be extensive, particularly if upgradgs are too
frequent;

7. Specially engineering activities to ensure reliability, security, and safety requirements may|be difficult,
and may require external certification (e.g., trusted software certification); repeat of sudh activities
upon OTS software)upgrade would be costly;

8. Support activifies by the bespoke software developer (where OTS software is an integrat¢d part of a
larger gystem) can be extensive due to embedded OTS updates/upgrades (frequehcy and/or
complexity of upgrader;

9. |Installation, acceptance and training for new releases; and

10. Response of the OTS software supplier to correction of defects may not satisfy operational reliability

and/or supportability needs.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

However, the OTS software product may provide an exceptional cost benefit with better reliability and
supportability than a custom equivalent if it is produced by a supplier who deploys exceptional
engineering practices, is cognizant of surety concerns and can provide documented surety evidence, and
is responsive to the customers needs. This is a very demanding condition for both supplier and customer
and typically can not be done cheaply. As an example, nearly all operating systems are provided through
commercial suppliers, even special-purpose real time operating systems. Because of the wide-spread
customer use, supplier skill, and development/support experience, the reliability of such products is
typically better than could be attained by developing a custom operating system.

OTS software or any reused software should be analyzed to consider the above concerns prior to use.
The following general guidance is derived from the references [NUREG6421], [NATO96], [NATO97],
[JA1005], and [DEFS0055]

6.3.1 SURPORT ToOLS
Guide 1: Alll tools used in the software development and/or support should have-sufficient reliability
assurance fo ensure that they do not jeopardize the reliability of the application system.

Guide 2: The reliability requirements for the tools should be deduced frominthe reliability anglysis of the
software dgvelopment process. This analysis should define the requited reliability of eadgh tool with
respect to ifs use in the project. Such tools do not necessarily need assurance if they are used only to
highlight issues for further investigation. If they are used to confirm behavior, then they| should be
appropriately reliable.

Page 60 of 176

Guide 3: Pr
the process

the process.

hazards sug

Guide 4:
requiremen

Guide 5: In
quality critg
support ang

6.32 Ustk

Guide 1: HIliabiIity analysis of the system/software application should be conducted to demo

there are n
the new sy4

pcess hazards should be identified where the level of safety assurance required ig
and tools and where the limitations of particular tools introduce a specific technig

Appropriate safeguards should be put inte place as defense against the identif
h that the complete development processiachieves the required safety assurance.

Fach tool should be evaluated Ao determine conformance with the require
addition to conformance to reliability requirements, tool selection criteria should in
ria such as usability, .nteroperability, stability, commercial availability, vendor m
familiarity to the Degign Team.
D IN NEW OR M@DIFIED SYSTEMS

adversesreliability implications resulting from the use of the previously developed
tem.

s for the tool's proposed use in the development of the system/software applicatior).

not met by
al flaw into
ed process

H reliability
clude other

aintenance

hstrate that
software in

Guide 2: P

Teviousty devetoped—software—should—conformtotheTetabitity Tequirements—and general

software engineering practices required for the system/software application; or, an appropriate mitigation
strategy should be demonstrated to have been implemented.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 61 of 176

Guide 3: Reverse engineering and/or V&V activities should be carried out on any previously developed
software to be used in the new system if evidence does not exist that it has been produced to the
requirements of the general software engineering practices required for the system/software application.

Guide 4: The extent of the reverse engineering and V&YV activities should take into account the rigor of
the previously developed software's development process, the extent of application functionality provided
by the previously developed software, and the previously developed software’s in-service history.

6.3.3 DURING IN-SERVICE

Guide 1: In-service history should only be taken into account as evidence of the reliability of the

previously d

Guide 2: A
system/soft
required for

Guide 3: A
identified in

Guide 4: Ju
final system

Guide 5: Al

documentaffon equivalent to the general software engineering practices required for the systs

application.

NOTE—WN
thd

practices of the required application. ~In"such cases, careful consideration should be

the
S0

6.34 Do

The OTS s
practices a
system/soft
supplier.

Although th
associated

eveloped software where reliable data exists relating to in-service usage and failur

e rates.

Il changes to previously developed software made as part of its incorporation in the

ware application should be to the requirements of the general software enginéerir
the system/software application.

| previously developed software incorporated in the system/software application
the Software Reliability Case.

g practices

should be

stification that the previously developed software will not adyersely affect the religbility of the

software application should be provided in the Software Reliability Case.

previously developed software incorporated in the final application should be pr

en changes are made to the previously.developed software, there may be conflig

bvided with
m/software

ts between

practices of the previously developéd software and the general software ¢ngineering

benefits of deviation from versus-consistency with the practices of the previously
tware.

CUMENTATION

made as to
developed

bftware documentation appropriate to support evidence of its general software ¢ngineering

hd level of reliability is dependent upon how the OTS software is used, critic
vare application, and expected responsibilities for support of the OTS softw

e QIS software guidance in both [NUREG6421] and [DEFS0055] is targeted
with ‘safety systems, the guidance is really applicable to any OTS software. Th

blity of the
hre by the

o software
s guidance

targets goo

d—softwareengineeTing practices augmented by safety=specific practices approp

iate to the

required integrity level. By including reliability-specific requirements and practices, the guidance would
be just as appropriate for addressing OTS software reliability concerns as well as safety concerns.
Adding security-specific practices to the mix would allow for a complete surety approach to OTS software.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 62 of 176

As a minimum, the documentation should be artifacts derived from the activities such as suggested in the
guidance of 6.3.1, 6.3.2, and 6.3.3. Most of this documentation is supplementary to the software reliability
plan and software reliability case information and should take a similar format for consistency. Additional
information specific to OTS software might include a supplier survey, escrow and maintenance contracts,
training materials, and user guides.

6.4 Data Collection and Repositories

While there are numerous approaches to data collection, there exists an inherent set of data and metrics
that an organization should collect to improve the quality of their products as well as the processes used
to create them. Generally speaking, there are three groups of metrics to be monitored for trends: product
metrics, process metrics. and resource metrics.

6.4.1 ORGANIZATIONAL RESPONSIBILITIES
A product development team should be established to assess the validity of the data sollected, track fault
resolution, provide statistical analyses, and assure that the necessary corrective action is implemented

whenever necessary. The members of this team should consist of representatives from the

appropriate

Design teamns, a Quality Assurance representative, a Reliability engineer;’a program pl

nning and

scheduling jperson, and a finance representative. The group should appoint a leader to schedule and
conduct tegm meetings, provide the team/management interface, assign necessary action items, publish

team decisipns, and record meeting minutes. An appropriate reliability data collection capabili
based on the customer's needs initially identified during the "Determline Customer Requirements"
and evolved as necessary as tasks are conducted to ensure reliability requirements are met and ¢

should be
task activity
emonstrate

to the custoer that the requirements have been met.

6.42 DAl
Certification
emphasis o
analytically
as well as
necessary {

A COLLECTION

has become increasingly important:itcthe contractor role and in turn has lead t¢ increased
h data collection processes. Collecting the appropriate types of data allows the cpntractor to
derive the metrics necessary to evaluate the product, such as test stop time, relgase quality
the effectiveness of the quality of properly collected data. For in-service data, it will be
o distinguish failures caused by software, hardware, a combination of hardware ar|d software,

software data and/or instructions, and other potential sources such as operator error. The dafa collection

effort shou
database a
established
for and mar

d include training the-individuals responsible for the collection and entry of data into the
5 well as obtaining\management buy-in. Once an effective data collection systen becomes
it will be a negessary tool in the product evaluation process. It will also be necesgary to plan
age the sustainment of this data collection system.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 63 of 176

6.4.3

MEASUREMENT AND METRICS

A complementary set of software reliability measurements and metrics should be collected, integrated,
and analyzed throughout the software life cycle in order to provide a comprehensive and ongoing
assessment of software reliability. These measurements and metrics should be defined during the pre-
development phase. Goal and acceptance criteria for actual results should be established for each

measurement and metric using techniques such as Goal, Question, Metric (C.1.6).

Metrics should be

selected that will: (1) measure different aspects of the product and the process and resources used to
develop it; and (2) be used during each of the life cycle phases. The correlation between actual results
and stated goals and/or regulatory and contractual requirements should be monitored during each life
cycle phase and for each category and subcategory of metrics. This will permit corrective action to be

taken in a
duration, cg
will vary de

6.4.3.1 A

Product me
stated softy
completeneg

Completengss and consistency metrics indicate whether or not custemer requirements are

Complexity
validation 3
record the
growth ang
appropriate
customer's
recorded in

6.4.32 A

Process m
process(es
rigor applie

timely and cost effective manner. Metrics should be chosen based on the s
mplexity, and risk of a project, as appropriate for the stated reliability goal. Then

pbending on the needs of the project.

roduct Metrics

trics provide a quantitative assessment of whether or not a projectyis on target
ss and consistency; complexity; error, fault and failure; and reliability growth and

metrics indicate if a software implementation is overly complex, which will
nd verification activities, as well as future maintajnability. Error, fault, and fail
humber, type, and severity of defects found during, the different life cycle phases.
prediction metrics are used to predict future)behavior once a product is fi
set of product metrics should be selected from these four categories, bas
needs. The results of collecting, analyzing, and interpreting product metrics
the Software Reliability Case.

rocess Metrics

ize, scope,
etrics used

or meeting

are reliability goals. As defined in [IEEE982-1], there are four categories of prodlct metrics:

prediction.
being met.
complicate
Lire metrics
Reliability
elded. An
ed on the
should be

etrics provide both a quantitative and a qualitative assessment of the integrity of the
used to develop a software product. As explained in Part 3 of [IEC61508], thg¢ degree of
H to a development process increases in proportion to the level of software reliability required;

[IEEE982-1
control. S
the use of
between th
metrics sha
collecting,
Case.

i.e., the hi}her the software reliability goal, the more stringent the process controls.

As| defined in
, there are two categories of process metrics: sub/process effectiveness and management
b/process effegtiveness metrics analyze the results of reviews, audits, and inspdctions, and
static and dynamic analysis techniques. Management control metrics measure the intervals
b time when'an error was introduced, detected, and removed. An appropriate sef of process
uld besselected from these two categories, based on the customer's needs. The results of
hnalyzing, and interpreting process metrics should be recorded in the Softwar¢ Reliability

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 64 of 176

6.4.3.3 People/Resource Metrics

People/resource metrics provide a qualitative assessment of the appropriateness of the people and
resources used to develop a product and enforce a process. The four categories of people/resource
metrics are competency, schedule reality, development environment, and human computer interface
(HCI) issues. Competency metrics evaluate whether or not the project staff have the appropriate
education, experience, and certification to develop a software system with the stated reliability geal.
Schedule reality metrics assess whether an appropriate mix of people and resources are being applied at
the right time during the project. Development environment metrics evaluate whether appropriate
hardware and software platforms and automated tools are being used on the project. HCI metrics
evaluate whether issues related to domaln knowledge operatlonal profiles, and so forth have been
adequately ad n these four
categories, based on the customers needs. interpreting

The results of collectmg, analyzmg, and
people/resqurce metrics should be recorded in the Software Reliability Case.

6.4.4 FAILURE INCIDENT REPORT FORM
The example database form, shown in Figure 9 illustrates a failure incident report that would pe part of a
FRACAS (C€.4.2) database application tool. This form includes problem description, failure identification,

failure corrgctive action information and configuration management change'board decisions.

logistics in
associated
and reportg
critical, sec

6.45 Da]

There are g

reliability dgta that might be important to collect\’ order to support reliability analysis. An

such data f
Data and Al
support for
resources.

RAC is a

external rel
provides a
definitions,
design app
reliability te

The refere
http://www.

In addition,

ormation is included to uniquely identify the failed cemputational componept and the

software product and module fault information. Defining the associated queries,
would be based on the functional requirements of\the software, i.e., safety c

data sorts,
fitical, flight

irity of data, and so forth.
A REPOSITORIES

ome limited existing reliability data basetkepositories that provide an indication of|the type of
example of
om the AIAA repository is defined in reference [AIAAR013] and summarized in Table 10. The
nalysis Center for Software (DACS) and Reliability Analysis Center (RAC) also prpvide some
reliability data repositories.a§,well as other software engineering and reliability [information

source for softwarereliability information and references. It maintains extensjve links to
ability resources-as-well as provides its own sources of reliability reports and topls. DACS
software reliability’source book [DACSO02] that includes: an overview of softwark reliability,
basic statistical concepts & methods, selection & use of reliability/quality metrids, software
roaches, feliability allocation, prediction and estimation, analytical reliability techpiques, and
5t technigues/processes.

nce \[BASILIO2] identifies a Center for Empirically-Based Software Engineering| (CeBASE,
CeBASE.org). CeBASE accumulates empirical models in_order to provid¢ validated

guidelines for selecting techniques and models, recommend areas for research, and support software
engineering education. One CeBASE objective is to validate empirical software engineering
assumptions. Software metric/reliability data will support that objective. Guidelines for specific data to
collect may be an important future result from this effort.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 65 of 176

TABLE 10—EXAMPLE RELIABILITY DATA FOR THE AIAA REPOSITORY

Data Category Data ltem

Project Data Information to identify and characterize each system and effort that generates
data stored in the database.

-life cycle activities and schedule information for each activity

-Development environment characteristics

Component Data Information for each system component, e.g., module

-size in source lines of code, function peints

-source language

-complexity measure

Dynamic Failure | Information for each failure recorded
Data

-activity being performed (test, operation, maintenanceg)
-date and time of failure

-severity of the failure (critical, major, minar)

-type of failure (interface, logic, data, userinput/output)
-failure detection method (inspection,test)
-component(s) where root causéfault(s) found

- CPU hours since last failure; humber of test cases since last failure] wall clock
hours since last failure;(iest hours per test interval and number| of failure
detected in each interval; test labor hours since last failure

Fault Correction | Information for eagh failure corrected with a software change.
Data

-date and timée the software change/fix was available

-sourge\of fix (requirements, design, code)

-type-of change (correction, enhancement, adaptation, no change)
-labor hours required for correction {(analysis, change, test)

-CPU hours required for the change/fix; number of runs required to make the
fix; wall clock hours used to make the correction

Lessons Dearned | Information about the project (development/support) and contacts
Data

-corporate knowledge of the software development, testing, maintenance
support

-lessons learned and contact person with knowledge about the project

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 66 of 176

@, Microsoft Access - [Failure Incident Report : Form]

JLCN 1 | I TR [T
o T e T

cF
FIGURE 9—E)(®QSLE FAILURE INCIDENT REPORT FORM
O® |
QO
X
3
@YBMWW

P - Y

AND LOGISTICS (RMSL) SOFTWARE COMMITTEE

REAFFIRMED BY THE SAE G-11 RMSL SOFTWARE COMMITTEE

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012 Page 67 of 176

APPENDIX A
RELATIONSHIP TO EXISTING STANDARDS AND GUIDELINES

There are many standards and guidelines from military and industry sources for which this guideline
should be an important resource. This guideline, JA1003, may provide directly aligned guidelines such
as for [JA1002]. JA1003 may provide supplementary or complementary guidelines, such as for [DO178B]
or [DEFS0042-2]. JA1003 may integrate well with a software engineering standard such as [IS012207]
or [IEEE12207]. JA1003 may integrate with a system engineering process standard such as [CMMI] or
implement software-specific reliability concerns within a system standard, such as [JA1000] or [ARMP-1].
In some cases, the referenced guidelines such as in [AIAAR013] and [BSI5760-P8] provide more
detailed mformatlon that Would support |mplementmg methods/techniques summarlzed |n JA1003. In
addition, there ! he strongly
related areas of safety secunty ma|nta|nab|l|ty supportablllty and dependablllty such as({DEFS0055],
[JA1010], ahd [JA1005]. A selected set of standards and guidelines is identified in Table,A1 glong with a
variety of characteristics that illustrate some of these relationships to this JA1003 guide.

Many of the standards and guidelines referenced in this document are discussed in sone detail in
reference [HERRM99]. The publication [PRIME97] is intended to provide capsulé” summaries fof the most
pertinent US and international commercial and government specifications, ~standards and |handbooks
dealing with reliability, maintainability, availability and dependability. It js-intended for programy managers
and other individuals who need a concise overview of the most importagt applicable documents available
in the field] The publication enables readers to determine the dpplicability of the documents without
having to gbtain them first. In addition, Internet sites exist (see’ 2.2) that have a world-wide search
capability fgr reliability standards and standards organizations:

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 68 of 176

TABLE A1—CHARACTERIZATION OF STANDARDS AND RELATIONSHIP
TO SOFTWARE RELIABILITY

Organization

Standard/Guideline

JA1003 Relationship

Primary Application Area

Relationship of JA1003 to
Standard/Guideline

SAE JA1000 System Reliability Standard Aerospace and Ground Vehicles Directly aligned
JA1000-1 System Reliability Guide Aerospace and Ground Vehicles Directly aligned
JA1010 System Maintainability Standard Aerospace and Ground Vehicles Parallel
JA1010-1 System Maintainability Guide Aerospace and Ground Vehicles Parallel
JA1002 Software Reliability Standard Aerospace and Ground Vehicles Directly aligned
A1003 Software Reliability Guide Aerospace and Ground Vehicles Same
A1004 Software Supportability Standard Aerospace and Ground Vehicles Parallel
A1005 Software Supportability Guide Aerospace and Ground Vehicles Paralle/
A1006 Software Suppert Concept Guide Aerospace and Ground Vehicles Parallef
ISO SO 12207 Software Engineering Standard Universal Supplementary suppdrt
ISO/IEC SO 15288 System Engineering Process Guide Information Technology Supplementary suppdrt
IEC EC 61713(Draft) Software Dependability Guide Universal Parallel
EC 61719(Draft) ngitd“‘éare Dependability Measurement ;. o a Parallel
EC 61508 System Electronics Safety Standard Electronic‘'systems Supplementary suppgrt
EC 615111 System Electronics Safety Standard Proce'ss Industry Sector Supplementary suppgrt
NATO ARMP-1,4.6,7 System R&M Standard and Guidance \NATO Collaborative Procurement Directly aligned
IEEE EEE 12207 System Software Engineering Standard |Universal Supplementary suppgrt
EEE 982.1/2 Software Measurement Staqdard Universal Framework for detailgd methods
EEE Std. 1228 Software Safety Standard Universal Parallel
EEE Std. 1413 gi:lc?:mty PregdiCuah & Assessment Electronic Systems and Equipment |Framework for methdd assessment
UK MOD DefStan 00-42 Systerm/Saftware R&M Standard UK MOD Procurement Directly aligned
DefStan 00-55 System/Software Safety Standard UK MOD Procurement Parallel
DefStan 00-60 System Logistics Standard UK MOD Procurement Parallel
UK BSI BS5760 Systerm/Software Reliabi!ity Process & Universal Framework for detail¢d methods
Product Assessment Guide
AlAA PAAR=G13 azf::ozzlsgj‘:Ey%ggggerzrgejg:d Universal Framework for detailgd methods
FAA g SottwareEngneermgiSatet-Stendard égmxﬂiftems & Equipment pptememtan-stmpt
SEI CMMI E;{:ﬁgﬁ:ﬁt\wam Engineering Process Universal Supplementary support
RAC [ROMES7] 2y;siész80fhware Reliability Assurance ;e el Framework for detailed methods
MISRA MISRA-VBS Software Engineering Guidelines Motor Vehicles Supplementary support

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 69 of 176

APPENDIX B
EXAMPLE PLAN AND CASE OUTLINES

B.1 Software Reliability Plan Thematic Outline
1. MANAGING THE SOFTWARE RELIABILITY PROGRAM ACTIVITIES
1.1 Define purpose, scope of plan and program, reliability goals and objectives
1.2 Nomenclature and project references

1.3 Program management functions: responsibility, authority, interaction between system
and software reliability programs; customer interaction/involvement; risk management

1.4 Resources needed, including personnel and equipment
1.5 Schedule
1.6 Training
1.7 Subcontract Management
1.8 Plan approval and maintenance
2. |PERFORMING SOFTWARE RELIABILITY PROGRAM ACTIVITIES
2.1 Determine Customer Requirements
2.1.1 Establish supplier-custormer dialogue
2.1.2 Identify operational'conditions of use
2.1.3 Define in-sérvice conditions of support
2.1.4 Establish metrics: goals, assumptions and claims, and expected evidlence
215 Revelop plan
2.1 Document pre-development case evidence

2.2« Meet Customer Requirements

D — — o .

2.2.2 Design reliable solution
2.2.3 Implement reliable solution
2.2.4 Verify and validate solution is reliable

2.25 Assess and manage reliability risk

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 70 of 176

B-‘?

226

Document development case evidence

2.3 Demonstrate Customer Requirements
2.3.1 Qualify/certify the product and process
2.3.2 Establish process controls
2.2.3 Transition to operational environment
2.2.4 Train end-users, operations and support staff
2.3.5 Pursue continuous improvement
2.3.6 Establish data collection and reporting
2.3.7 Document post-development case evidence for in-service U

3. DOCUMENTING SOFTWARE RELIABILITY PROGRAM-ACTIVITIES

3.1

3.2 Software reliability case file of evidenee
Software Reliability Case Thematic Outline:

1. SYSTEM CONTEXT DESCRIPTION

1.1

1.2

1.3

1.4

1.5

2.1

Lifecycle practices

Equipment and systemboundary

Usage and operating environment

Interfaces, build standard, and configuration

Operdting and maintenance personnel qualification
Support/maintenance policy as it applies to sustained reliability
SOFTWARE RELIABILITY GOALS, OBJECTIVES, REQUIREMENTS

What they are, overall and for partitions

Z.2

2.3

24

25

2.6

Howwere they derived, apportionedto software ard partitions

Relation to system reliability goals

Regulatory and/or contractual requirements

Areas of potential risk

Summary of reliability strategy

Se

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 71 of 176

3. ASSUMPTIONS AND CLAIMS

3.1 Assumptions: agreed upon constraints and basis for claims

3.2 Claims: agreed upon validation and certification criteria; traced to requirements
4. EVIDENCE

For each of the phases Pre-development/Development/Post-development/In-Service provide
evidence related to:

4.1 _Process activities and evaluations that demonstrate achievement of software reliability
claims

4.2| Product activities, characteristics, and analyses that demonstrate achieverment of
software reliability claims

4.3| Qualifications of people and resources conducting the activities\for which evidpnce is
being provided

5. CONCLUSION/RECOMMENDATION
5.1 Summary of reliability requirements, claims, and actual evidence provided
5.2| Limitations based on system use boundariesehvironment and support constrairts
5.3 Recommendations related to certification;'qualification, warranty
6. CERTIFICATION RECORDS

6.1| Reference record of all acceptance warranty, certification, qualification activities and
results

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 72 of 176

APPENDIX C
TASK ACTIVITIES, METHODS, AND TECHNIQUES

Table C1 lists current techniques which can be used to achieve and assess different aspects of software
reliability throughout the life cycle phases defined in reference [JA 1002]: pre-development (concept &
feasibility), development (design &production), and in-service. As indicated in Table C1, many of the
techniques can be used in multiple life cycle phases to implement software engineering/reliability task
activities such as described in Section 5. In particular, it is important to note that many techniques used
during development can also be used during the in-service phase to investigate an accident/incident
and/or determine why a system did not achieve its stated reliability goals. There are other existing
techniques and new ones belng developed that may be more suitable for a spec:|f|c application. The
basic gwde ine : appropriate

ntent is for

appropriate] for their specific project. These choices should be listed and explained in tHe Software
Reliability Plan. The results obtained from using these techniques should-be included as|part of the
evidence in|the Software Reliability Case.

The descriptions of the software reliability techniques listed in TableCC1 follow a similar fofjmat to that
used in refgrence [JA1000-1]. It is not possible to provide all information related to each technique nor all
pertinent re¢ferences, but these summary pages should be Ahelpful in getting an initial yiew of the
technique gnd locating more details about the technique. The information describing each tpchnique is
organized gs follows:
a. |Purpose: What is achieved by using the technique;
b. [Description: Main features of the techhique;

c. |Benefits: Value the method adds'to the product development and assessment prgcess;

d. |Case Evidence: Results of applying the technique that might be included in the software
reliability case;

e. |Limitations: Fagtors’that may limit the use of the technique and/or effect the interpretation of
the results obtained; and

f. |References: Sources for more information about the technique.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 73 of 176

TABLE C1—TECHNIQUES TO ACHIEVE AND ASSESS SOFTWARE
RELIABILITY BY LIFE CYCLE PHASE

TECHNIQUES Section LIFE CYCLE PHASES
Concept & Design & In-Service
Feasibility Production
C.1 Analysis Techniques
change impact analysis CA1.1 X X
common cause failure analysis ci1.2 X X X
defect renfovat=fficiency €1S X X X
design of ¢xperiment Ci14 X X X
formal scgnario analysis C15 X X X
goal—ques‘ion—metric (GQM) C16 X X
hazard anlalysis Ci1.7 X X
pareto anilysis (execution time, c18 X X
failure soyrces)
probabilisiic methods Ci1.9 X X
Pugh seleftion C.1.10 X X X
quality flnction deployment C.1.11 X X X
(QFD)
reliability gllocation C1.12 X X
reliability Block diagrams C1.13 X X
reliability grediction modeling C114 X X
response time, memory, C1.15 X X
constraint fanalysis
six sigma C1.16 X X X
sneak circlit analysis C1.17 X X
software fhilure modes, ~effects, C.1.18 X X X
criticality gnalysis (SFMECA)
software [fault.‘tree analysis C.1.19 X X X
(SFTA)
software reliability engineering C.1.20 X X X
(SRE-Musa)
statistical analysis C.1.21 X X

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 74 of 176

TECHNIQUES Section LIFE CYCLE PHASES
Concept & Design & In-Service
Feasibility Production
C.2 Design Techniques
design by contract C.2.1 X X X
fault tolerant design c2z2 X X
formal methods/languages c.23 X X
independence, isolation, C24 X X X
inoperability, incompatibility (14)
mistake/error proofing c25 X X X
Petri nets C26 X
software igtegrity checks c.av X X
C.3 Verification Techniques
boundary yalue analysis C.3.1 X X
cleanroom c3.2 X
coverage analysis C.33 X X
dynamic tgst methods C.34 X X
formal n-process reviews C.35 X X
(Fagan software inspections)
operationd| profile C.3.6 X X
peer reviews C.3.7 X X
reliability gench marking .38 X
reliability gstimation modeling C3.9 X X
root causg analysis C.3.10 X X
testability analysis, fault C.3.11 X X
injection, fhilure asserion
C.4 Management Techniques
configuration mahagement C.41 X X
failure repotting and corrective c4.2 X X
action system (FRACAS)
life cycle process standard C.43 X X X
process assessment C44 X X X
requirements management c45 X X X
risk management C4a6 X X X

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 75 of 176

C.1 Analysis Techniques
C.1.1 Change Impact Analysis

a. Purpose: Analyze apriori the potential local and global effects of changing requirements,
design, data structures, and/or interfaces on system performance and reliability.

b. Description: Changing or introducing new requirements or design features may have a ripple
effect on the current system. A change or fix may be applied to one part of a system with
detrimental or unforeseen consequences on another part Change impact analysis evaluates
the extent and impact of proposed changes by examining which requirements and design
components are interdependent. Change impact analysis can also be used to support
analysis of alternatives, by highlighting which alternative can be implemented mosgt efficiently,
and to identify the extent of reverification and revalidation needed (regressiontesting, C.3.4).
Change impact analysis can be used to determine how measures such as\interdependency,
coupling, cohesiveness, and inheritance can be improved to meet goals{14, C.2.4}.

c. |Benefits: The potential for uncovering or introducing new errors when implementipg changes
is minimized.

d. |Case Evidence: Design architecture analysis for interdependency, coupling, cohesiveness,
and inheritance areas of improvement to meet meastrement goals; proactive gvidence of
defect prevention during development and support by reducing required reverification and
revalidation efforts when changes are made; evidence of improvement ip reliability
effectiveness.

e. |Limitations: The scope of the analysis determines its effectiveness.
f. |References:

1. Armnold, R. and Bohner, S, "Software Change Impact Analysis," IEEE Compiliter Society
Press, 1996.

2. IEC 61508-7:1998-09-15, "Functional safety of electrical/ electronic/ prggrammable
electronic safety=related systems. Part 7: Overview of techniques and |measures,"
International-Electrotechnical Commission, 1998,

3. Joint Software System Safety Committee and EIA G-46 Committee, "Software System
Safety"Handbook," Joint Services Computer Resources Management Group,|U.S. Navy,
U.S~Army, U.S. Air Force, 1999.

4_'System Safety Society, System Safety Analysis Handbook, July 1993.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012 Page 76 of 176

C.1.2 Common Cause Failure Analysis

a.

C.1.3 Defect Removal Efficiency

a.

Purpose: Identify failure scenarios in which two or more events could occur as the result of a
common design defect.

Description: Common cause failure analysis seeks to identify intermediate and root causes
of potential failure modes. The results of common cause failure analysis is often documented
graphically by event trees. This information is analyzed to determine failures that could result
from common design defects, hardware failures or anomalies and to propose the requisite
mitigating actions, such as the need for 14 implementations (C.2.4), or other such strategies.
Common cause failure analysis should include both hardware and software components.

See also root cause analysis (C 310}, software FMECA (C.1.18) and software FTA (C.1.19).
Benefits: Common cause failure analysis results in a more robust design arghiteciure.

Case Evidence: Graphical event trees or other similar evidence that specific fajlure modes
have been identified and resolved with mitigating actions; proactive evidence that design
architecture is reliable; supports safety and security systenysoftware FMECA and
system/software FTA.

Limitations: The extent to which the analysis is carried out; i.e., how far back iftermediate
and root causes are identified, determines its effectiveness.

References:
1. IEC 61508-7:1998-09-15, "Functional safety of electrical/ electronic/ programmable
electronic safety-related systems. Part 7: Overview of techniques and measures,"
International Electrotechnical Commiission, 1998.
2. Joint Software System Safety-Committee and EIA G-46 Committee, "Software System
Safety Handbook," Joint Services Computer Resources Management Group,|U.S. Navy,
U.S. Army, U.S. Air Foreg,»1999.

3. System Safety Sociéty, System Safety Analysis Handbook, July 1993.

Purpose: Measures the percentage of software defects removed prior to delivery of the
softwaredoyclients.

Descfiption: Defects can be inserted into software artifacts during any life cyfle activity,
ineluding the support phase. It is well-documented that it is more cost-efficienf to remove

3 concept of
measuring when defects are introduced, when defects are removed, and the "efficiency" with
which defects are removed at any given stage. The "efficiency" is the percentage of total
defects removed at any stage compared with the total defects that are documented to exist at
that stage. Defects are counted through operational use and support activities.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 77 of 176

TABLE C2—DEFECT ORIGIN AND REMOVAL EFFICIENCY METRICS

Defect Origins | Defect Potential | Removal Efficiency | Delivered Defects
Requirements 1.00 77% 0.23
Design 1.25 85% 0.19
Coding 1.75 95% 0.09
Document 0.60 80% 0.12
Bad Fixes 0.40 70% 0.12
Total 5.00 85% 0.75

Formal In-Process Reviews (C.3.5) is one way to determine information needed tg-¢pmpute
the|defect removal efficiency for requirements, design, implementation, and test planning
reviews. Unit, integration, and system testing provide additional defect removal’infofmation
prigr to customer release. Customer operational defects during a specifiéd version felease
proyide the basis for the overall defect removal efficiency. The defect removal efficiency may
als¢ provide a quality level measure in terms of a defect density measure.
TABLE|C3—DEFECT POTENTIAL AND REMOVAL EFFICIENCY BYCQUALITY LEVEL
Quality | Defect Potential | Removal Efficiency Delivered defects per
Lgvel (min, max, avg) | (min, max, avg) fungtion point
1 (~3.0,>15,5.0) | (<70%, >95%, 85%) ~0.75
2 (~3.0,>12,4.8) | (<70%, >96%, 87%) ~0.60
3 (~2.5,> 9,4.3) | (<75%, >97%, 89%) ~0.47
4 (~2.3,> 6, 3.8) | (<B0%, >99%: 94%) ~0.20
5 (~2.0,> 5,35) | (<90%, >99%, 97%) ~0.10
The software capability maturity @s measured by the Capability Maturity Model (C.4.4) has
begn related to defect density measures as illustrated in the table below (delivered defects
perlfunction point):
TABLE C4—DEFECT DENSITY RANGES BY SEI CMM LEVEL
SEl kevel Minimum Average Maximum
1 0.150 0.750 4.500
2 0.120 0.624 3.600
3 0.075 0.473 2.250
4 V.UZSo V.2Z0 1.2UU
5 0.002 0.105 0.500

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 78 of 176

c. Benefits: Defect removal efficiency provides an early focus on defect prevention and
removal, a measure of design reliability, and a measure of engineering processes
effectiveness. Integrated with Root Cause Analysis (C.3.10) and process improvement
assessments (C.4.4), software reliability can be improved.

d. Case Evidence: Defect removal efficiency measure for requirements, design,
implementation, test, support; defect density measures; estimate of SE| Level

e. Limitations: The categorization of "defects" in terms of severity level, type, and source may
be difficult. Customer classification and reporting of defects may not be possible for some
software products.

f. |References:
1. Jones, Capers, Assessment and Control of Software Risks, Prentice Hall, 19p4.

2. Jones, Capers, Applied Software Measurement: Assuring Productivity apd Quality,
McGraw-Hill, 1996.

3. Jones, Capers, Software Assessments, Benchmarks,'and Best Practicep, Addison
Wesley, 2000.

4. Kan, S.H., Metrics and Models in Software~Quality Engineering, Addigon-Wesley
Publishing Co., 1995.

C.1.4 Design of Experiment (DOE)

a. [Purpose: Process of planning an expetiment so that appropriate data will be collected and
then analyzed by statistical methods resulting in valid and objective conclusions.

b. |Description: Classical Design OfExperiment (DOE) for software is based on esfablishing a
testing strategy to optimize the'test coverage effectiveness. "Tests" may be of the software
product or may be extefnal experiment tests used to validate a software prqduct. For
example, given certain boundary conditicns, one might select test parameter values inside,
on, and outside thetboundary. With many parameters and multiple input possibilities, it is
cost effective to eonduct sensitivity, convergence, and other tests/experiments to [statistically
determine the software's range of validity. Deciding which experiments to select |s a classic
DOE problem:*One DOE application of particular importance is for software that implements
a physicg thermal/mechanical/electrical model or some coupled model combingtion. The
DOE , establishes software verification testing and experimental validation [strategies.
[Analytie, semi-analytic, and manufactured solutions will drive the verification testing. Physics
eXperiments will drive the validation testing to determine the capability of the software
' ; T, i application
reality. A thorough analysis of the requirements and understanding of the usage of the
software (e.g., see C.1.5 and C.3.6) is needed to prepare the parameter-level test/experiment
tables and test plans. The standard DOE process, with some interpretation for software
application, includes the following steps:

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 79 of 176

1. Recognition of and statement of the problem: relate to the real-world application being
modeled by the software, the parameters/physics/algorithms used in the model, and the
software implementation;

2. Choice of factors and levels: relate the factors to boundary conditions, input
parameters, model convergence strategies, known analytic solutions, and application
uncertainties;

3. Selection of a response variable: relate the response variable to desired model results;

4. Choice of experimental design: array type; replication, randomization, and blocking;
sample size

5. | Performance of the experiment: conduct of software testing, physics experimerlts, and
so forth;

6. | Data analysis: statistical determination whether the tests/experiments are adeqtiate for
decisions; and

7. Conclusions and recommendations: decisions based on-‘goftware verification| and/or
validation results

Automotive, telecommunication and defense industries feport big productivity improvements
to traditional testing methods due to two factors: (1) focus on the software usage, and|(2) use
of & mathematically sound way to span the entire operating domain with a minimum set of
tes| cases.

c. Benefits: Large savings in testing time andsweost. For modeling and simulation software, the
qugntitative measures of the software ptedictive accuracy, uncertainty of model paratneters,
and software implementation error can be estimated. These measures provide evidence of
“reljable" results for specific applicationis.

d. Cagse Evidence: Test ¢overage measures; test cost-effectiveness mepsures;
verffication/validation evidence that software meets its requirements; predictive accyracy of
soffware and uncertaintyxmeasure of results.

e. Limjitations: Training-(method and domain of knowledge) is required to develop and ganalyze
an |experimental ‘design; selection of proper experimental factors is critical to sudcessful
exgerimentation; and may take significant sensitivity analysis to determine which facfors are
the|most sighificant.

f. Reilerences:

1. Box, G.E.P., Hunter, W.G., and Hunter, J.S., Statistics for Experimenters: An
Introduction to Design, Data Analysis, and Model Building, John Wiley & Sons, 1978.

2. Phadke, M.S., Quality Engineering Using Robust Design, Prentice Hall, November
1989.

3. Phadke, M.S., "Planning Efficient Software Tests," CrossTalk Journal of Defense
Software Engineering, October 1997, pp 11-15.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 80 of 176

C.1.5 Formal Scenario Analysis

a. Purpose: Define a quantitative characterization of how the software will be used from which
test cases can be developed.

b. Description: Formal scenario analysis develops a scenario-based test model from the
analysis of operational scenarios, user-views and events. Scenarios are defined as an
ordered sequence of events which accomplishes a functional requirement specified by an
end-user. User views are defined as a set of system conditions specific to a class of users.
Events are defined as particular stimuli that change a system state and/or trigger ancther
event. Scenarios are recorded in a formalized tree notation, use case, or a structure similar
to that used for finite state machines. Formal scenario analysis has similar objective as
[operational—profites (C-3.6), afthough the term operational profitehas a mgre specific
interpretation in its use as part of the Software Reliability Engineering (C.1:20] approach.
The results of this technique support other techniques such as Design of Experinmpent (C.1.4)
and various dynamic test methods (C.3.4) such as regression testing(stress festing, and
usability testing. In addition, this technique can be used to develop support scgnarios that
might uncover potential failures such as in software installation/leading or initialization that
would substantially affect the reliable operation of the software.

c. |Benefits: Formal scenario analysis is useful for identifying deadlock, nondeterministic
conditions, incorrect sequences, incorrect initial and terminating states, and errorg caused by
an incomplete understanding of the domain knowledge:

d. |Case Evidence: Supports test coverage analysissmeasures; analytical evidence ¢f customer
requirements to test mapping.

e. |Limitations: Formal scenario analysis.is*somewhat labor intensive because |customers,
developers, and end-users are involved,

f. |References:

1. Hsia, Pei, "Testing the\Therac-25: A Formal Scenario Approach, Safety anfl Reliability
for Medical Device~Software," Health Industries Manufacturers Associatjon (HIMA)
Report No. 95-8):1995, tab 6.

2. JA1005, SAE Surface Vehicle/Aerospace (JA) Standard 1005, “Software Sypportability
Program.Implementation Guidelines,” Society of Automotive Engineers, 2001.

3. Musa, John D. “Operational Profiles in Software Reliability Engineefing,” |IEEE
Software, March 1993, pages 14-32.

4/ Pant, H., Franklin, P. and Everett, W., "A Structured Approach to Improving Software-
Reliability Using Operational Profiles," Proceedings of the 1994 Annual Reliability and
Maintainability Symposium, Anaheim P. 142-146.

5. Weidenhaupt, Klaus, et al, “Scenarios in System Development: Current Practice,” IEEE
Software, March/April 1998, pp 34-45.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 81 of 176

C.1.6 Goal, Question, Metric (GQM)

a. Purpose: Goal-Question-Metric (GQM) Paradigm is a means of measuring various software
attributes.

b. Description: The GQM paradigm first step is to define measurement goals tailored to the
specific needs of an organization. Goals are refined in an operational way into a set of
quantifiable questions. Questions imply a specific set of metrics and associated data for
collection. This paradigm has been used successfully in several organizations. Typical
measurement areas include:

1. Delivered defects and delivered defects per size measure (e.g., function points, source
tmesof LUuIt:),

2. Adherence to schedule (e.g., actual vs estimated);

3. Estimation accuracy (e.g., variance with confidence limits);
4. Number of customer problems (e.g., open, closed, rate of closure, by criticalify level)
5. Time that problems remain open (e.g., time from receipt 10 closure); and
6. Software reliability (e.g., failure rate, defect density; probability failure will not{occur).
A template devised by Basili and Rombach to define measurement goals is:

"Analyze <object of study> in order to<purpose> with respect to <focus> from the point
of view of <point of view>."

where each of the bracketed terms <\.> defines the object, purpose, focus, and iewpoint of
the measurement goal.

Typical goals related to software reliability might be:

1. Goal: Decrease ‘delivered software defect density from 0.75 per function peint to 0.10
per function point within 2 years.

2. Goal: Improve delivered software failure rate per 1000 execution hours from|0.1 to 0.01
within2-years.

3. /Goal: Meet the required delivered software reliability of 0.90 for the time perjod of 1000
€xecution hours.

c. Benefits: The GQM method is simple, can be used to related software measurement to
organization goals, costs very little to implement, and has been effectively used by many
organizations

d. Case Evidence: Metrics related to defects, field problems, defect density, failure rate,
engineering process adherence or improvement, or any other such measures that might
relate to a basic case evidence claim would be typical case evidence.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

JA1003 Reaffirmed MAY2012

Page 82 of 176

e.

f.

Limitations: Goals may not be able to be stated in precise enough terms so as to know when
the goal has been met; required negotiation may not be possible among the customer,
supplier, and certification authority in order to agree on the goal as well as what questions,
metrics and supporting data would adequately support the goal - this is similar to being
unable to agree on a case evidence claim or the evidence required to support that claim.

References:

1.

Basili V. R. and Mendonca M. G., "Validation of an Approach for Improving Existing
Measurement Frameworks," 484 IEEE Transactions on Software Engineering, vol. 26,

no. 6, pp 484-499, June 2000.

C.1.7 HaZ

ard Analysis

Description: Conventional hazard analysis censiders faults likely to lead to failure
physical effects.
problem is more complicated and perhaps less amenable to “conventional skills’
design faults that must be considered<and not physical degradation. The typica
for hazard analysis include:

1.

Basili, V.R. and Rombach, H.D., "The TAME Project: Towards Improveme
Software Environments," IEEE Transactions on Software Engineering,\vol
pp. 758-773, June 1988.

Basili, V.R. and Weiss, D.M., "A Methodology for Collecting Valid Software

Data," |IEEE Transactions on Software Engineering, vol.(10; no. 6, pp.

November 1984.

When hazard analysisyisto be applied to software-based sy

nt-Oriented
14, no. 6,

Engineering
728-738,

Purpose: Identify threats (hazards) that will apply tothe design of a specified softyvare based
system; identify the most safety-critical areas of the Software.

5 based on
stems, the
L since it is
objectives

identifying critical system modules and program sections, i.e., those with most safety

relevance;

2. verifying thats.software required to handle the failure modes idgntified by
systems/subsystems hazard analysis does so effectively;

3. allowingsmore rigorous methods and controls to be selected and applied {o areas of
software which are most critical to the safety of the system;

4. identifying and evaluating safety hazards associated with the software, with the aim of
either eliminating them or assisting in the reduction of associated risks;

5. identifying failure modes that can lead to an unsafe state and making recommendation
for changes; and

6. determining the sequence of inputs which could lead to the software causing an unsafe

state and making recommendations for changes.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 83 of 176

Examples of some general threats that affect the design of any software based system
include:

1. environmental and operating conditions;
2. logic control (real time executive);

3. system function calls;

4. system resources;

5. __timing; and

6. | software design notations.

Analysis of these and other threats will assist in identifying critical software modules and
ungafe failure modes. This knowledge may then be used to change the-design to reduce the
risi of a hazard occurring or to direct the more rigorous development and fault toleran{ design
technigues to the most critical areas of software. Software FMECA-(C.1.18) and Software
FTA (C.1.19) can be classified as hazard analysis techniques., The Falla reference below is
an |excellent source for descriptions, research results, and software-specific applications of
hagard analysis as well as SFMECA and SFTA.

c. Benefits: Provides a systematic approach to identifying-hazards that software may cfeate or
enhance; through mitigating actions reduce the risk-of the identified hazards through software
degign changes.

d. Ca’tle Evidence: Identification of any safety‘eritical part of the software system and eyidence
of mitigation strategies implemented to reduce the effects of identified hazards.

program that purposefully integrates the software component; this requires spegialized
personnel resources, additional project cost and schedule effort, and management
commitment.

e. Lir%Etations: Hazard analysis is_most effective when conducted within a systen| safety

f. Relerences:

1. Falla, Mike,-"Results and Achievements from the DTI/EPSRC R&D Programme in
Safety (Critical Systems," Edited by Mike Falla, Motor Industry Software Réliability
Association, November 1996.

ISO/IEC 61511-1, Edition 1.0: "Functional safety of electrical/electronic/programmable
. _ , . : SSTOTT—2903.

3. Leveson, Nancy G., Safeware: System Safety and Computers, Addison Wesley
Publishing Company, 1995.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 84 of 176

C.1.8 Pareto Analysis

a. Purpose: Provide the engineering community with a method for identifying, categorizing, and
representing which subsets of problems occur more frequently within the problem domain.

b. Description: Pareto analysis is one of the basic seven quality control tools: check sheets,
Pareto charts, Ishikawa diagrams, flow diagrams, histograms, scatter plots, and control
charts. Pareto analysis is based on the Pareto Principle (80% of the problems are due to
20% of the possible causes) identified by Vilfredo Pareto, an Italian economist. Since Pareto
analysis determines which subsets of problems occur more frequently, it also provides
guidance into the prioritization of problems and the efficient allocation of resources to solve
the problems. Typically Pareto analysis applied at the system level might identify "software"
as a category in which a high frequency of problems (e.g., defects/faults/failurgs) occurs.
Within the "software" category, the problems may be further categorized by-RPargto analysis
to indicate what types of software problems occur most frequently (or perhaps haye the most
severe impact), and perhaps the components of the software system in which the problems
are occurring. Prioritization of resources can be applied to resolving the problems in the
most effective way. Root cause analysis (C.3.10) investigatién) might lead fto process
improvement opportunities.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

Count

Control
Digital| %,

Caleuldte
Report 1
Report 2

,,
i
g
@
w0
g
o
o

FIGURE C1—EXAMPLE PARETO CHART OF SOFTWARE PROBLEMS

The key elements to, éffectively apply Pareto analysis techniques includes the following
steps:

1. assemble.ithe data to be analyzed and establish a counting rule;
2. addup the total of each item under analysis in accordance with the counting|rule;

3. st the items in order of count magnitude, starting with the largest;

mmmmm represents
of the total;

5. construct a bar chart representing categories on one axis and percentage on the other
axis in order of percentage from largest to smallest, label the diagram with category
titles and percentage marks; and

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

JA1003 Reaffirmed MAY2012

Page 85 of 176

6. interpret the diagram as to what the categories mean, possible root causes,
pricritization, and allocation of resources to resolve the problems represented on the
diagram.

c. Benefits: Pareto analysis is simple to use and provides a simple visual communication

mechanism between engineers who must implement solutions and management who must

decide how to prioritize and allocate limited resources. Tracking results of
comparing Pareto charts over time is a simple way to show improvement results.

d. Case Evidence: Ordered list of highest frequency events (e.g., modules failing)
e.

not describing. Certain problem categories may be infrequent, but may haye.an
impact. Further investigation such as root cause analysis may be required. t6 pr
complete information prior to key decisions.

References:

1. Juran, J.M, and Godfrey A.B., Juran's Quality Handbook, 5" Edition, M

December 1998.

Deming, W.E. and Walton, M., The Deming Management Method, Perigee
Co., January 1988.

C.1.9 Propabilistic Methods
Purpose: Provide the ability to predict antoutcome accurately.

Description: Probabilistic methods ‘are used to model uncertainties, develop [
process models, compute probabilities, estimate risk, identify most likely outcom
sensitivity measures, and identify key drivers. Probabilistic technology works t
combination of predictive medels: deterministic process, process variable, and ung
deterministic process model is a mathematical representation of how an event wo
be behavioral, process, physics, and/or rule based. A process variable n
mathematical representation of the statistical behavior of the variables that
deterministic process model to predict the outcome of the process, includ
associated /with uncertainties inherent in these variables. An uncertainty 1
mathematical representation of the uncertainties that could potentially influence th
and are-not considered as part of the variable models. The general illustrat
probabilistic methods work is shown below.

action by

Limitations: |t is possible to draw improper conclusions based on incomplete or inaccurate
comparisons of data. One must use common sense to understand what the chdt is and is

huch larger
bvide more

Graw Hill,

Publishing

robabilistic
Bs, provide
hrough the
ertainty. A
'ks. It may
hodel is a
enter the
ng factors
hodel is a
e outcome
on of how

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 86 of 176

i’ TR
: i
—> :
'l Process E
Data i| Variable H
' H
Bases i| Models i
i
H
«Most Likely Future Outcome .
U inty ! Predictive) +Probability of Future Events Model Tuning
+ | Uncertainty | § 6 ntegration)L:Key Process Variables Suggeslions
! pey
Knowledge 4": Models E_" Models Engine -pst Results Analysis ™ (Bayesian
: H «Impact of Process Changes alvsis
«Model Tuning Suggestions Analysis)
Judgement Deterministic]
Process
i | Models - v
o

FIGURE C2—EXAMPLE PROBABILISTIC METHODS WORK FLOW

Sug¢h probabilistic methods can be used in many ways to support a software r
prdgram. For example, if the software itself is a large scale implementation of a

liability
physics

mofel, then the verification and validation of the software implem@entation coulfl apply

prababilistic methods to determine the predictive validity of the’ physics mg
implemented in software. The software's "predictive accuracy" would reflect its r
undler specific application conditions. Software reliability predi¢tion models (C.1.
estjmation models (C.3.9) could be analyzed using probabilistic methods and proH
tesfing (C.3.4) to determine the accuracy of those models and applicability for us
degision tool within a software reliability program.

Benefits: Quantify reliability, failure probability, riskliability, and safety measures;

del as
Bliability
4) and
abilistic
e as a

Hevelop

optimal strategies for testing, warranties, development/support cycle time; idenfity and

mapage uncertainties.

Capge Evidence: Key variables in reliability models can be identified; reason for r
prediction; software reliability prediction model accuracy; software reliability estimatio
acquracy; evaluation of actual perfermance against the model

results and a variety of automated tools; existence of necessary parameter data for a
an
degision makers to accept the probabilistic results.

Lirs}iltations: Probabilistic methods usually require expert users/analysts to inter

Reterences:

1. | Khalessi, M.R., "Probabilistic Technology Description Whitepaper," Prediction
2002 http://www.predictionprobe.com/

bliability
h model

ret the
Ccuracy

lyses may not be available; complexity of approach may make it difficult for no-expert

Probe,

2. AIR 5109, "Applications of Probabilistic Methods," Society of Automotive Engineers,

February 2002.

3. AIR 5080, "Integration of Probabilistic Methods into the Design Process," So
Automotive Engineers, January 1997.

ciety of

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 87 of 176

C.1.10 Pugh Selection

a. Purpose: Select the best alternative when confronted with several alternatives that possess
positive and negative qualities.

b. Description: Pugh selection is a method to evaluate several alternatives such as concepts,

designs, processes, and models.

The evaluation is a systematic analysis against each

datum leading to selection of that alternative which best satisfies the assessment criteria.
The method uses a matrix approach along with an iterative procedure to produce potential
hybrids that may be better than any of the original ideas.

Thg key steps in the Pugh selection method are as follows (one or multiple alternat
selgcted):

Pugh selection is an effective method for:
1.

2.

4,

5.

1.

2.

clarifying customer requirements

reviewing several alternatives against a "standard"; for examiple relial
selection against a standard set of acceptance criteria

assuring that the selection criteria is understood by the project team
obtaining team consensus on the acceptability of specific attributes of an alts

assuring that the best alternative is identified

identify and describe all alternatives
list the criteria to be used toassess each alternative

select the current appréach as the normative standard against which all alt
be assessed as equalto, better than, or worse than based on each criteria

ility model

rhative

ves can be

brnative will

compare and-Score each alternative against the normative standard for each criteria;

S!+!

total the'humber of scores in each category for each alternative; eliminat
thoge alternatives with a significant number of "-"s.

create hybrid alternatives based on changing the "-"s to "+" or "s"s wherever

b or modify

possible

make the atternative with the highest—"+F 1o ="Tatior greater tham -0—an
"hybrid" alternative can be created, the optimal alternative

| no further

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 88 of 176

c. Benefits: The Pugh selection method can result in greater insight into requirements and
solutions, a quick review of many alternatives and additional hybrid alternatives, better
understanding of alternatives, a more objective selection process, and increased teamwork
and communication among the team members. One direct application to the software
reliability program would be in selecting appropriate software reliability prediction and/or
estimation models based on specified criteria, such as found in reference [AIAAR013].

d. Case Evidence: Measures of best alternative selection.
e. Limitations: The Pugh selection method is subjective and provides mostly a qualitative

judgement of alternatives. In addition it is not easy to differentiate between two closely
matched alternatives

f. |References:

1. ANSI/AIAA R-013-1992, “AIAA Recommended Practice for Software |[Reliability,”
February 1993.

2. Mattson, C. A., and Messac, A., “Development of a Pareto-Based Concept Selection
Method,” 43" AIAA/ASME/ASCE/AHS Structures, Strucétural Dynamics, and Materials
Conference, Paper No. AIAA 2002-1231, Denver, CQ; April 22-25, 2002.

3. Pugh, S, Creative Innovative Products Using-Tetal Design, Addison-Wesley, Reading,
MA, Editors: Clausing, D. and Andrade, R.,.1990.

4. Ulrich, K., and Eppinger, S., Product Design and Development, McGraw-Hil|, 2000, pp.
137-157.

C.1.11 Quality Function Deployment (QFD)

a. |Purpose: Quality function deployment is intended to assure that customers requirgments and
expectations are met by incorporating the voice of the customer into product Hesign and
development.

b. |Description: QFD-is~a structure, comprehensive planning process based on p series of
matrices used to-decument, correlate, communicate and track the customer requirements
throughout the\organization and/or specific projects. The QFD planning matrix i$ called the
"House of Quality" because of its shape. QFD may be used for many customer-related
activities(such as: business and market analysis to determine which products fo develop;
clarification of customer requirements; incremental design improvement on next| generation
desighs; team focus on the critical and key priorities of the customer. In traditional QFD there
dare)‘four phases in which the voice of the customer is deployed: (1) Product|Planning -
ranstating cuStomer Tequirements Mtoproduct characteristics, (27 Part Deployment -
translating product characteristics into component characteristics; (3) Process Planning; and
(4) Process Control. The steps for product planning, most important for determining
customer requirements, include:

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 89 of 176

1. identify customer wants and needs - example: level of reliability;
2. rank the importance of the customer needs - example: reliability relative to ease of use;

3. define satisfaction measures for each need - example: design evidence, failure rate
evidence from testing;

4. determine critical areas for project focus by mapping satisfaction measures to needs -
example: matrix for requirements identification and ranking table traced to satisfaction
measures;

5. establish design activities to meet the customer requirements - example: software
FMECA, software FTA, software reliability prediction/estimation modeling, |failure rate
analysis.

buy-in for the result; priorities are known by all on the project team; fewer and earller changes
in design; increased teamwork and better communication among team members; |lower start-
up cost.

c. |Benefits: Greater understanding of the customer needs; interaction enstires bettgr customer
IT

d. |Case Evidence: Identification of customer requirements, ‘measures to known whether
requirements are met, and design activities targeted to Qroviding measurement evjdence.

e. |Limitations: Requires training to be most effective; 'scope of the effort may be exjensive and
require careful tailoring for most effective implemientation; total effort may exceed|capabilities
of the team to provide.

f. |References:

1. Akao, Y., Quality Function Deployment, Productivity Press, January 1990.

2. Akao, Y. and Mizuno,.S:,; QFD: The Customer-Driven Approach to Quality Planning and
Development, Productivity Press, April 1994,

3. Quality Function\Deployment Institute, http://www.qfdi.org/
C.1.12 Reliability Allocation

a. |Purposey~Distribute system reliability requirements to the components that make up that
systems

vete—DBttine—a drat—aratysts—sy eliability—regtiremen llocated to
individual system components, including hardware and software. It is usually necessary to
perform trade-off studies to determine the optimum architecture which will meet reliability
requirements. This may involve reassigning functionality between hardware and software
components.

b. [Rescription: Reliability requirements are generally specified at the system level jearly in the

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 90 of 176

Reliability allocation for individual subsystems must ensure that hardware and software
subsystem goals are well-balanced among themselves. Well-balanced usually refers to
approximate relative equality of development time, difficulty, risk, or to the minimization of
overall development cost.

Reliability allocation is closely coupled with reliability block diagrams (C.1.13), formal
scenario analysis (C.1.5), and operational profiles (C.3.6) in the construction of a reliability
model. Once the scenarios/profiles are understood, the reliability allocations are made in
accordance with the critical mission segments. For computational units in which software
executes, the allocation model will be serial between the computational hardware and
computational software.

c. Benefits: If sufficient analysis is conducted to support the reliability allocation, the Iibflihood
thal reliability requirements will be met is greater. Also, it is more cost effective\to analyze
and allocate reliability requirements early in the life cycle than to wait until after‘a sygtem is
developed to find out that it doesn’t meet reliability requirements.

d. Cage Evidence: Early specification of the reliability measures expected for the spftware
profluct(s) and the tradeoffs to balance cost, schedule, and risk against the reliab:"ity key
performance parameter. Integrated system and software reliability./modeling and planfing.

e. Limftations: Mission scenarios and software operational profiles may not accurately model
the [operational use.

f. References:

1. Friedman, M. and Voas, J., Software Assessment: Reliability, Safety, and Tegtability,
John Wiley & Sons, 1995.

2. | Lakey, Peter and Neufelder, Apn Marie, “System and Software Reliability Asqurance
Notebook,” Rome Laboratory “Report, Griffiss Air Force Base, Rome NY| 1997.
http://www.cs.colostate.edul=cs530/rh/

3. O’Connor, P., Practical Reliability Engineering, 3rd edition, John Wiley & Sons, 1991.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 91 of 176

C.1.13 Reliability Block Diagrams

a.

Purpose: Identify diagrammatically the set of events that must take place and the conditions

which must be fulfilled for a system or task to execute correctly.

Description: Reliability block diagrams illustrate the relationship between system

components with respect to the effect of component failures upon overall system

reliability.

These relationships generally fall into four categories: a serial system; a dual redundant
system; m out of n redundant system; or a standby redundant system. An analysis of these
relationships and their hazard rates will lead to an optimum system configuration which will
meet specified reliability requirements. For a system composed of several components, the

software element is integrated as a sequential (AND) component of each

hardware

s
commercial), operating system software (usually commercial), and application 'Soft
target of main interest). The steps for integrating software reliability into the-system
computation are as follows:

1 Divide system into block diagram components for reliability analysis;

2 Allocate system reliability objectives to individual compenents;

3 Calculate the component reliability from predicted'subcomponent reliabilities
software reliability in terms of calendar time;

4 Calculate system reliability from block component predicted reliabilities;
5 Select appropriate operating modes for reliability measurement;
6 Compare reliability component.measurements against objectives;

7 Modify hardware/software until objectives are met, or change objectives.

tHe parts. For example”
R = R1*R2*R3"..."Rk

fdr sequeptial components 1,2,3, ... \k. The block diagram and example computa

application software is illustrated below:

c:tmputational component. The software may consist of one or more¢.sequential
bcomponents. Typically no more than a layering of communication software (usually

vare (the
reliability

- use

The two basic paths on a reliability block diagram are the sequential (AND) path and the
parallel (OR) path. For-an AND path the reliability is simply the product of the religbilities of

ion for a

computational hardware component that has a layer of commercial operating sygtem and

(Ea.

C1)

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 92 of 176

"AND" Configuration

Ri1=0.99 R2=0.98 R3=0.97
®&——— PC (HW) 0S (SW) AP (SW) —@

R = R1*R2*R3 = 0.99%0.98%0.97 = 0.94
FIGURE C3—EXAMPLE SERIAL RELIABILITY BLOCK DIAGRAM COMPUTATION
For an OR of parallel paths the reliability is one minus the probability of failure of the whole.
The probability of failure is the product of the probability of the failures of each component on
a parallel path. For example:
R=1-F = 1-(F1*F2*F3*...*Fk) = 1 - (1-R1)(1-R2)(1-R3)...(1-Rk) Eq. C2)
for parallel components 1,2,3,...,k. The block diagram for two parallel computatipnal

hardwgre components each of which has a layer of commercial operating system jand
applicdtion software is illustrated below:

"OR" Configuration

RTi=0.99 RT2=0.98 RT3=0.9
T
PC (HW) 08 (SW) AP (SW)
*— —e
RBi1=0.99 RB2=0:98 RB3=0.97
. PC (HW) 0S.(SwW) AP (SW)

R =[1- FT*FB] = [1 - (1-RT)(1-RBY] =[1-(1-.94)(1-.94)}] = [1-0.06%0.06] = [1-0.0036] = O.
FIGURE J4—EXAMPLE PARALLEL RELIABILITY BLOCK DIAGRAM COMPUTATION

The cqgmbined computation eomponent consists of a hardware component and a software
compohent in serial relationship. That means that if either hardware or software fail, then|the
compohent fails. In addition, the software component is composed of two parts in series |the
non-developmental software (e.g., OTS) and the newly developed application-spegific
softwate. If either©fthe two software parts fail, then the software fails, and consequently | the
compufational component fails. This model of a HW/SW element is illustrated in the figure
below:

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 93 of 176
— — — —Software Configuration ltem— — — —
I
I
I
Hardware Non- Newly I
Canfiguration » Developmental + Developed |
Item Software Software |
|
I
I
e -l
FIGURE Cp—RELIABILITY BLOCK DIAGRAM MODEL OF HW/SW COMPUTATIONAL COMIPONENT
c. |Benefits: Reliability block diagrams are useful for analyzing systems which are cgmposed of
multiple diverse components, such as hardware and software.
d. |Case Evidence: Identification of software component relationship to the system |in terms of
physical reliability computation.
e. |Limitations: A reliability block diagram does not necessarily represent thg¢ system’s
operational logic or functional partitioning.
f. |References:

1. |EC 61508-7:1998-09-15, "Functionak&afety of electrical/ electronic/ programmable
electronic safety-related systems. \ Part 7: Overview of techniques and measures,"
International Electrotechnical Comimission, 1998.

2. |EC 61078:1991, "Analysis(techniques for dependability - Reliability blogk diagram
method," International Electrotechnical Commission, 1991.

3. Lakey, Peter and Neufelder, Ann Marie, “System and Software Reliability [Assurance
Notebook,” Rore ‘Laboratory Report, Griffiss Air Force Base, Rome [NY, 1997,
http://www.cs ¢olostate.edu/~cs530/rh/

4. O'Connef,\P., Practical Reliability Engineering, 3rd edition, John Wiley & Sorfs, 1991.

C.1.14 Reljability Prediction Modeling
a. |Purpoese: Predict the future reliability of software
b. Description: The failure probability of a new program, usually one that is under development,

is predicted by comparing it to the known failure probability of an existing operational

program. The criteria for determining the degree of similarity include:

design similarity,

similarity of service use profile, procurement and project similarity, and proof of reliability

achievement.

The generic process involves estimating the fault density per thousands of

non-commented source lines of code (KNCSLOC) or function points. This value is then used

to predict the number of errors remaining in the software and the time it will take to

find them.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 94 of 176

As an example of such a prediction model, the reference by Neufelder-Owner describes a
model based on approximately 125 design and process parameters to predict delivered
defect density. A process score "X" which is the sum of scores on the parameters is related
to the defect density (defects per KNCSLOC, which could also be in terms of function points)
as follows:

Process Score = X = sum of scores on 125 parameters (~1400 to 2800 range)
Predicted Delivered Defect Density per KNCSLOC(assembler) =D,

D, = 0.00000017*X* — 0.00100439*X + 1.58463875

D, =a" D, = predicted delivered defect density in KNSLOC for language “L”; a4 ~ 7 for
C++

Converting to Reliability

N, = Inherent # delivered defects =D__*4.5 = ~5.27

Q = Ratio between N, and failures per time based on historical data/testing data
Ay =N, " exp(-Q"/ N,)/t =527 "exp (-Q"V N,) / t

R(t) = exp (- At)

c. Benefits: The prediction model can be executed @t any time during the software life cycle.

d. Casge Evidence: Reliability prediction based on design parameters and other life cycle
progess information.

e. Limjitations: The prediction validity depends on the similarity between the historical data upon
which the prediction model is.based and the target software program with its opegrational
environment(s) and operatiohal profile(s).

f. Relerences:

1. | ANSI/AIAA R-013-1992, “AlIAA Recommended Practice for Software Reljability,”
February1993.

2. | BS5760 Part 8. "Guide to the Assessment of Reliability of Systems Containing
Seftware," British Standards Institution (BSI), October 1998.

3. ~ Fenton, N., Soffware Mefrics: A Rigorous Approach, Chapman & Hall, 1997,

4. IEEE Std. 982.1-1988, "IEEE Standard Dictionary of Measures to Produce Reliable
Software," IEEE, 1988.

5. IEEE Std. 982.2-1988, "IEEE Guide for the Use of the Standard Dictionary of
Measures to Produce Reliable Software," IEEE, 1988.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 95 of 176

6. |EEE Std-1413-1998,"I[EEE Standard Methodology for Reliability Prediction and
Assessment for Electronic Systems and Equipment," IEEE Reliability Society,
December 1998.

7. Lakey, Peter and Neufelder, Ann Marie, “System and Software Reliability Assurance
Notebook,” Rome Laboratory Report, Griffiss Air Force Base, Rome NY, 1997.
http://www.cs.colostate.edu/~cs530/rh/

8. Lyu, M., Handbook of Software Reliability Engineering, McGraw-Hill, 1996.

9. Musa, J., Software Reliability Engineering, McGraw-Hill, 1999.

10. Neufelder-Owner, A., N., “The Facts About Predicting Software Defects apd|Reliability,”
Journal of the RAC, 2ndQ, pp 1-4, 2002.

C.1.15 Regponse Time, Memory, Constraint Analysis

a. [Purpose: To ensure that the operational system will meet all stated response tinje, memory
and other constraints.

b. |Description: Engineering analyses are conducted by an integrated product team [to evaluate
the system architecture and detailed design. The allocation of response time budgets
between hardware, system software, and application, software are examined to determine if
they are realistic and comply with stated requirements. An assessment is made t¢ determine
if the available memory is sufficient for the system and application software. Mihimum and
maximum system throughput capacity undeflow, normal, peak, and overload cpnditions is
estimated. Techniques such as Rate-Monotonic Analysis ensure the ability of real-time tasks
to meet all critical deadlines even in the worst case system response time to events.

c. |Benefits: Design deficiencies, hardware and software, are uncovered beforg full-scale
development.

d. |Case Evidence: Identification and removal of specific design deficiencies.

e. |Limitations: This is«a\static analysis technique which should be supplemented by dynamic
test methods (C.3.4))such as performance testing and stress testing.

f. |References:
1. |[EC.B1508-7:1998-09-15, "Functional safety of electrical/ electronic/ programmable

éléctronic safety-related systems. Part 7: Overview of techniques and measures,”
International Electrotechnical Commission, 1998.

2. Sha, L., Klein, M.H., Goodenough, J., “Rate Monotonic Analysis for Real-Time Systems,”
129-155. Foundations of Real-Time Computing: Scheduling and Resource Management,
Boston, MA: Kluwer Academic Publishers, 1991.

3. Klein, M.H., et al.,, A Practitioner's Handbook for Real-Time Analysis: Guide to Rate
Monotonic Analysis for Real-Time Systems, Boston, MA: Kluwer Academic Publishers,
1993.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 96 of 176

C.1.16 Six Sigma
a. Purpose: Quantify the design margins or product robustness.

b. Description: Six Sigma uses statistical tools to characterize how well the product can be
expected to perform vis-a-vis its operating limits. Six Sigma is a quantitative process for
problem resolution. It has been extended to Design for Six Sigma (DFSS) as a preventative
design tool, to assure designs are 6 Sigma robust, meaning they will have fewer than 3.4
defects per million opportunities. Five key Six Sigma stages direct project execution: “Define,
Measure, Analyze, Improve and Control” along with the associated terminology and tools.
The correspondmg prOJect stages for Design for Six Sigma (DFSS) are: “Identify, Develop,

analyses Histograms, Paretos, Trend analyses, Multivariate analyses, Correl tion tests,
Process map after fix, Simulations, Design of Experiménts (DOE), Mistake Proof|ng, Control
plans (goals, responsibilities, actions, metrics, schedules), Statistical Process Cgntrol (SPC)
implementations, fault containment plans/systems, and feedback systems. A gogd overview
and explanation of the Six Sigma tool set, andcabywhat stage to apply the tools, can be found
at http://www.isixsigma.com/library/content/c020617a.asp

engineering colleagues are more coopperative in supporting a project if it is identified as a Six
Sigma project. Starting a Six Sigma project sets a good expectation. The tools pfomote “fact
based decision” making over eclassical “intuitive” problem solving. It is the scientific
approach.

c. |Benefits: Six Sigma is a systematic, praven approach to problem solving. ManaEament and

d. |Case Evidence: Statistical metrics related to delivered defects, defect [rates, and
development process:

e. |Limitations: The success of the Six Sigma approach is predicated on top-down management
support. lthhas failed when that is lacking. A company needs to culturally irftegrate Six
Sigma intoyits culture to achieve the synergistic returns that are possible.

f. |References:

-+
I

oo = M 4 Qe Q . Qi e Py
Dreyiogie, rorest; (MprEmeninyg- oIX olgiie. oIMarteT Soions OUST Statistical

Methods, John Wiley & Sons, New York, 1999.
2. Harry, Mikel, and Schroeder, Richard, Six Sigma, Doubleday, New York, 2000,

3. Pyzdek, Thomas, The Six Sigma Handbook, McGraw Hill, 2001.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 97 of 176

C.1.17 Sneak Circuit Analysis

a. Purpose: Identify unintended or unexpected software logic paths or control sequences that
could inhibit desired system functions or result in undesired system events.

b. Description: Sneak circuits are latent conditions that are inadvertently designed into a
system which may cause it to perform contrary to specifications and affect reliability. The first
step in sneak circuit analysis is to convert the source code into a topological network tree,
identifying the patterns for each node of the network. The use and interrelationships of
instructions are examined to identify potential sneak circuits. Categories of sneak circuits
that are examined include: unintended outputs, incorrect timing, undesired actions, and

misleading messages. The last step is to recommend appropriate corrective action to
resolve any unintended anomalies discovered by the analysis.

c. |Benefits: Latent defects are identified prior to a system being fielded.
d. |Case Evidence: Defect prevention and removal data.

e. |Limitations: Software sneak circuit analysis is somewhat laborlintensive and as quch should
only be applied to critical system components.

f. |References:
1. |IEC 61508-7:1998-09-15, "Functional safety“of electrical/ electronic/ programmable
electronic safety-related systems. Part¢Z})" Overview of techniques and measures,”

International Electrotechnical Commission, 1998.

2. Raheja, D., Assurance Technologies: Principles and Practices, McGraw-Hillf 1991,

3. System Safety Society, System Safety Analysis Handbook, July 1993.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 98 of 176

C.1.18 Software Failure Modes, Effects, and Criticality Analysis (SFMECA)

a.

b.

Purpose: Identify potential system and software failure modes, their effect and criticality, so

that mitigating design features can be incorporated.

Description: A software FMECA consists of two important parts: identification

through a

system/hardware FMECA of software components that could potentially result in a system
failure mode; and, application to the software of a procedure similar to a system/hardware

FMECA for those identified system failure modes. Like a hardware FMECA,

a software

FMECA identifies design deficiencies and vulnerabilities which could affect reliability. This
technique can and should be used iteratively throughout the software life cycle. The software

modes (particularly related to the identified system failure modes, but additi
modes may be identified as well) are predicted for each component. Gaus
“potential” software failure modes and their effect on system behavior is.pestula
the severity and likelihood of each software failure mode is determined.”“The pr
elements to be collected and analyzed for each potential failure mede are: the
cause(s), the effect of the failure, the criticality of the failure\the software
responsible, and the recommended mitigating control measuré. ™~ The results of

design of the software so that the potential for such software failure modes is redu

Failure Criticality Failure Modés and Effects Criticality Analy

Categ

=~ Severity Description Q BEAL

System Abort A software/finmware problem that results ina
systemn abort or crash

System Degraded | A software/fimmware problem that severely
No Workaround degrades the systermn and no altemative work-
around exists: restarts not acceptable Eff e CtS

System Degraded | A softwarefinnware problem that severely LA .
Warkaround degrades the system and an altemative work C r].t].cal].ty

around exists: process can contimue with
more operator action: restarts not acceptable .
Failure Modes

System Not A software/finware problem that does not
Degraded severely degrade the system or any essential
funetion: restart ace le

Minor All other problems or non-functional faults

FIGURE.C6—ELEMENTS OF A SOFTWARE FMECA
Benefits: A software’ FMECA can be merged with a system-level FMECA and inp
mitigation strategies.

Case, Evidence: Software failure modes, effects, criticality; defect prevention an
stratggies and results.

are failure
nal failure
s of these
d. Lastly,
nciple data
failure, the
component
a software

FMECA should be used to prioritize defect prevention and mitigation activities, i particular,

ced.

it to a FTA.

See SFTA (C.1.19). Potential for software failure modes is reduced through desigh and other

 mitigation

is used.

omated tool

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 99 of 176

f.

C.1.19 Sof

References:

1. AIR5080, "Integration of Probabilistic Methods into the Design Process," Society of
Automotive Engineers, January 1997.

2. Herrmann, D., Software Safety and Reliability: Techniques, Approaches, and Standards
of Key Industrial Sectors, IEEE Computer Society, Los Alamitos, CA, 1999,

3. IEC 60812:1985, "Analysis Techniques for System Reliability — Procedure for Failure
Meodes Effects Analysis (FMEA)," International Electrotechnical Commission, 1985,

4 | akey Peter and Neufelder Ann Marie "System and Software Reliability Assurance
Notebook,” Rome Laboratory Report, Griffiss Air Force Base, Romge,|NY, 1997,
http://www.cs.colostate.edu/~cs530/rh/

5. Pries, K., "Failure Mode and Effects Analysis in Software Development,'| Society of
Automotive Engineers, paper #982816, International Truck & Bus Meeting &|Exposition,
November 1998.

6. SAE J Standard 1739, " Potential Failure Mode and Effects Analysis in Desjgn (Design
FMEA) and Potential Failure Mode and Effects~Analysis in Manufagturing and
Assembly Processes (Process FMEA) and Effects Analysis for Machinery |(Machinery
FMEA)," Society of Automotive Engineers, August 2002.

7. Stamatis, D.H., Failure Mode and Effect-Analysis: FMEA from Theory to| Execution,
ASQ Press, 1995,

8. System Safety Society, System Safety Analysis Handbook, July 1993.

tware Fault Tree Analysis (SFTA)

Purpose: Identify potential.root cause(s) of undesired system events.

Description: A softwaré.FTA follows the same procedure as a hardware or sysjem FTA to

identify the root cause(s) of a major undesired event. SFTA is an extension of the SFMECA

(C.1.18) activity in'that the identified potential software failure modes are analyzed in terms of

what potentiahsoftware faults (single point of failure) or multiple faults (multiple points of

failure} might'result in the potential software failure mode. SFTA is particularly yseful in the
analysis ©f\events, or combinations of events, that will lead to a hazard. Startingat an event
which would be the immediate cause of a hazard, the analysis is carried out backward along

a paths Combinations of causes are described with logical operators (AND, OR, JOR, EOR).

Ibtermediate causes are analyzed in the same way back to the root cause. A sdftware FTA

hould be developed fteratively throughout the software fife cycle and i conjunction with a

SFMECA (C1.18).

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 100 of 176

Fault Tree Analysis

(FTA)
Logic Fault1| |Fault2] 3 vos Fault n|
Timing Lo |
Interface Fault 2.1| |Fault2.2|| |Fault2.3
Data Human Eror Human riror
Do¢umentation Cause v Cause {}
Software Softwarg
Product Process
Improvement Improvement

FIGURE C7—ELEMENTS OF A SOFTWARE FTA

c. Bdnefits: A software FTA can be merged into a hardwate or system-level FTA. Identified
software failure mode root causes can be mitigated by‘using the SFTA process eafly in the
dgvelopment/support process through design modifications.

d. Cgse Evidence: Potential failure root causes; mitigation strategy, verification rgsults of
dgsign modifications.

e. Limitations: The development of a SFTAcan be labor intensive unless an automatgd tool is
used.

f. References:

1. IEC 61025:1990,, "Fault Tree Analysis (FTA)," International Electrofechnical
Commission, 1990:

2. Lakey, Peter and Neufelder, Ann Marie, “System and Software Reliability Agsurance
Notebook,*;*Rome Laboratory Report, Griffiss Air Force Base, Rome NY, 1997.
http://www.cs .colostate.edu/~cs530/rh/

3.| Joint Software System Safety Committee and EIA G-46 Committee, "Softwarg System
Safety Handbook," Joint Services Computer Resources Management Groyip, U.S.

PI,\. L A LI A I 4. 000
av_y, oo I"‘\Illly, oo Al T UTUVES) TIJIJ,

4. System Safety Society, System Safety Analysis Handbook, July 1993.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 101 of 176

C.1.20 Software Reliability Engineering (SRE-Musa)

a. Purpose: SRE is a practice for quantitatively planning and guiding software development and
test, with emphasis on reliability and availability.

b. Description: Although the term “Software Reliability Engineering” is used in a more general
sense throughout this document, the SRE method described here is a specific instance of
how one might conduct a software reliability engineering program. This particular SRE
approach works by quantitatively characterizing and applying two things about the product:
the expected relative use of its functions and its required major quality characteristics. The
major quality characteristics are reliability, availability, delivery date, and life-cycle cost. In

i ' i derlying the

methodology is the basic premise of testing software under operational conditighg and use of

reliability estimation (C.3.9) growth models. In discussing SRE, you should| always be
thinking of total systems that also contain hardware and often human compoenents

When you have characterized use, you can substantially increase development dfficiency by
focusing resources on functions in proportion to use and criticality.)"You also maximize test
effectiveness by making test highly representative of use in the field. You chooge software
reliability strategies to meet the objectives, based on data cdéllected from previolis projects.
You also track reliability in system test against its objective-to adjust your test progess and to
determine when tests may be terminated.

software-based product, starting at the’ beginning of any release cycle. From aph economic
viewpoint, you can apply SRE te,any software-based product also, except for| very small
components, perhaps those .invelving a total effort of less than 2 staff months. SRE is
independent of development fechnology and platform. It requires no changes in grchitecture,
design, or code, but it may suggest changes that would be useful. It can be deplpyed in one
step or in stages. SRE‘is very customer-oriented: it involves frequent direct closg interaction
with customers. _IfSis’ highly correlated with attaining Levels 4 and 5 of the Software
Engineering Institute Capability Maturity Model. Despite the word “softward,” software
reliability engineering deals with the entire product, although it focuses on the sdftware part.
It takes a fulllife-cycle, proactive view, as it is dependent on activities throughout the life
cycle. _(tyinvolves system engineers, system architects, developers, userg (or their
representatives, such as field support engineers and marketing personnel), and managers in
a collaborative relationship. The cost of implementing SRE is small. There is an|investment
operating

d. Case Evidence: Quantitative measures of estimated software reliability through systematic
software reliability engineering approach; predicted operational reliability; estimated
corrective maintenance actions.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 102 of 176

Limitations: Not significant, as demonstrated by more than 65 published articles by users
who have successfully employed the practice. Accuracy depends on operational profile

specification, model parameter estimates, and sufficient test data.
References:

1. ANSI/AIAA R-013-1992,
February 1993.

“AlAA Recommended Practice for Software

Lyu, M., Handbook of Software Reliability Engineering, McGraw-Hill, New Yo

Musa, J. D., Software Reliability Engineering: More Reliable Softwa
Development and Testing, ISBN 0-07-913271-5, McGraw-Hill, New York, }9¢

Musa, J. D., "More Reliable Software Faster and Cheaper (Software
Engineering),” 2002. website(updated regularly).: http://members.aol.com/Jg

istical Analysis

Purpose: Provide standard techniques for collecting data and transforming it into
hat can improve decision making under data variability and-tincertainty.

Description: Statistical analysis provides the basis fofmany of the other reliability
and methods such as design of experiment (C.1.4){ probabilistic methods (C.1.9
prediction modeling (C.1.14), six sigma (C.1.16), spftware reliability engineering (C
reliability estimation modeling (C.3.9). Degisions are based on many differen
statistical techniques using general featurgs of data such as trend over time, cl
data points, evidence of non-randomness, and presence of 'outliers’. The ¢
population/sample, point estimation, :donfidence interval estimation, hypothesis 14
probability/probability distributions are'fundamental to statistical analysis.

Descriptive statistics deals .with~ organization, summarization, and presentation
populations or samples. Inferential statistics addresses use of the information in a
sample to draw conclusions about the population. Probability builds the base th

ork, and how the_conclusions from these inferential techniques can be inter|
presented correctly.
inferential statistics that helps us understand the variability (known information)
he uncertainty (unknown information) about data.

one to understand hew inference and decision-making techniques are developed,

Reliability,”

rk, 1996.

re, Faster
8.

Reliability
hnDMusa/

nformation

echniques
, reliability
1.20), and
t standard
ustering of
bncepts of
esting, and

bf data for
population
at enables
why they
breted and

Probability provides the mathematical foundation and lghguage of
gf data and

Reliakility models and categoerical classifications have been developed based o
naIyS|s For example one cIaSS|f|cat|on of such models is as predlctlon models

the |n|t|aI model deflnltlon as weII as to justify whether such a model is appropnate

statistical
C1.14) or
a to justify
touseina

given application. Another classification is in terms of stochastic reliability models as General

(e.g., graphical, time-series analysis), Black Box (e.g., fault activation, fail
environmental), and Structural (e.g., modular, hierarchical,
classification scheme is described in the reference [2] below.

hardware/software).

ure trend,
This

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 103 of 176

Some examples of useful estimates that can be provided by certain classes of stochastic
reliability models include: probability that software will not fail in a given period of operation;
mean time to next activation of a new software fault; current failure rate; predicted failure rate
after a given further period of trial and fault correction; expected number of faults that will be
activated in a given further period of operation; further time required for trial and fault
correction in order to achieve a defined target value of any of the previous items.

c. Benefits: Analyses can provide features of data that are ignored by black-box parametric
models; anomalies in data that may violate parametric models can be detected; non-
parametric models graphical analyses are simple to apply and an abundance of tool support
exists.

d. Cage Evidence: Statistical measures and confidence evidence in those measures.

preflictions of future reliability growth may not be applicable; data anomalies)can be dgtected
but[the cause must be determined by some other method such as toot cause gnalysis
(C.$.10).

e. Limijtations: Techniques do not generally model the mechanism of failure, hencé Io}g term

f. References:

1. | ANSI/AIAA R-013-1992, “AIAA Recommended Practice for Software Reliability,”
February 1993.

2. | BS5760 Part 8. "Guide to the Assessmeniy'of Reliability of Systems Containing
Software," British Standards Institution (BSl);, October 1998.

3. Hines, W.W., and Montgomery, D.Cs\Probability and Statistics in Engineering and
Management Science, Third Editiof,dJohn Wiley & Sons, New York, NY, 1990.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 104 of 176

c.2

c.21

a.

Design Techniques

Design by Contract

Purpose: Define a methodology through which software components can be
correctly through specifications (or contracts) that govern the interaction of the
with any potential user.

constructed
component

Description: The notion of Design by Contract is central in the systematic approach to object-

oriented software construction, as embodied in the Eiffel method.

Reliability, although

desirable in software construction regardless of the approach, is particularly important in the

object-oriented method because of the special role given by the method to reusability: unless

we can obtain reusable software components whose correctness we can trust
than we trust the correctness of usual run-of-the-mill software, reusability
proposition. Under the Design by Contract theory, a software system is.viewed

much more
s a losing
as a set of

communicating components whose interaction is based on precisely défined spedifications of

the mutual obligations -- contracts. The Design by Contractsuggests as
specification with every software element. These specifications\{or contracts)
interaction of the element with the rest of the world. A contra¢t.document prote
client, by specifying how much should be done, and the supplier, by stating that

sociating a
govern the
tts both the
he supplier

is not liable for failing to carry out tasks outside of the specifjed scope. The same Jideas apply

to software. This contract governs the relations betweén the routine and any pot
It contains the most important contract informatiop-about the routine: what each
guarantee for a correct call, and what each party.is entitled to in return.

The principle constructs of the software component contract include:

1. precondition: requirements that must be satisfied when a routine is called;

2. postcondition: requirementsthat must be satisfied when a routine ends;

ntial caller.
party must

3. class invariants: requiréments all class routine pre/post conditions must satigfy;

4. exception handling: raising exception to caller or retrying an alternative; and

5. other construets: check of preconditions by client; retention of original inputs for output

comparison.

naturally*implemented is an integral part of the Design by Contract approach.

The Eiffel

Providing 'an environment, including a specific language, in which these eILments are

methéd includes an implementation of the Design by Contract approach. In ad
are'limited forms of the Design by Contract constructs available for several

ition, there
languages,

“afthough these elements must be artificially designed, typically in the form of assertions. In

the Eiffel language, the constructs are directly implemented.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 105 of 176

c. Benefits: The benefits of Design by Contract include: (1) A better understanding of the
object-oriented method and, more generally, of software construction.; (2) A systematic
approach to building bug-free object-oriented systems; (3) An effective framework for
debugging, testing and, more generally, quality assurance; (4) A method for documenting
software components; (5) Better understanding and control of the inheritance mechanism; (6)
A technique for dealing with abnormal cases, leading to a safe and effective language
construct for exception handling.

d. Case Evidence: Requirements traceability to contract level; precise test coverage/measures;
e. Limitations: Requirements are not always able to be precisely described in terms of low level
constructs _although attempting to do so will sfill facilitate the requirement specification and
tracing process.

f. |References:

1. Meyer, Bertrand, Object-Oriented Software Construction, Prentice-Hall| 1997 (2™
Edition).

2. Meyer, Bertrand, "Applying Design by Contract," IEEE-Computer, Col. 25, No. 10, Oct
1992, pp 40-51.

3. Meyer, Bertrand, Eiffel: The Language, Prentice~Hall, 1992.

4. Home page for the Eiffel products: http:/Avww.eiffel.com/

C.2.2 Faylt Tolerant Design
a. |Purpose: Detect and respond to erraneous system states in order to contain the results.

b. [Description: There are three categories of fault tolerance: system , hardware, and software.
Hardware fault tolerance is:usually implemented through redundancy. The concépt is that if
a primary hardware component fails, the redundant component will take over apd continue
normal operations. Software fault tolerance is usually implemented through blodk recovery,
degraded mode operations, diversity, error detection/correction algorithms and other design
techniques. Becgause it is nearly impossible to develop software that is 100% fred of defects,
design techniques should be employed to detect and recover from errors while| minimizing
the consequences of those errors. System fault tolerance combines hardware and software
fault tolerarnice, with software monitoring the health of both the hardware anfl software.
System—fault tolerance should be employed for high integrity, mission critical systems;
especially those that include embedded real-time applications.

Tecovery refers 1o design features 9 tnctional operation in the
presence of one or more errors. Backward block recovery resets a system to a previous
known safe state if an error is detected. Forward block recovery forces a system to a future
known safe state if an error is detected.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 106 of 176

Degraded mode operations provides an intermediate state between full operation and system
shut-down. This allows minimum system functionality to be maintained until corrective action
can be taken. During the design and development of high integrity, mission critical systems a
minimum required set of functionality should be identified, along with the conditions under
which the system should transition to this mode. Design features should ensure this
functionality set will be operational in the presence of one or more failures. A maximum time
interval for a system to remain in degraded mode operations should be defined. A method of
notifying operational staff that a system has transitioned to degraded mode operations should
be identified.

Error detection and correcuon algorlthms have been used to increase the reI|ab|I|ty of serwce

Diversity refers to using different means to perform a required function or solve thg same
proplem. Diversity limits the potential for common causefailures. For software, this means
developing more than one algorithm to implement. a solution. The results fron each
algprithm are compared and if they agree, the apptopriate action is taken. Depending on the
critcality of the system, 100% agreement or majotity agreement may be implemented. If the
resplts do not agree, error detection and recovery algorithms take control.

c. Benefits: Fault tolerant design can inctease the reliability of critical system functigns and
components.

d. Casge Evidence: Fault tolerant design architecture and test results verifying fault tolerance
imglementation.

e. Limitations: Fault tolerance increases the physical size and complexity of a system through
hadware redundancy,-software diversity and other design features. This may conffict with
spdcified size constraints.

f. Relerences;

1. | IECV61508-7:1998-09-15, "Functional safety of electrical/ electronic/ programmable
electronic safety-related systems. Part 7: Overview of techniques and measures,"
International Electrotechnical Commission, 1998.

2. Levi, Shem-Tov, Fault Tolerant System Design, McGraw-Hill, 1994.

3. Lyu, M. (ed.), Software Fault Tolerance, John Wiley & Sons, 1995.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 107 of 176

C.2.3 Formal Methods/Languages

a. Purpose: Provide a mathematically based technique for describing system properties within
which systems can be specified, developed, and verified in a systematic rather than ad hoc
manner.

b. Description: Formal methods involve the use of logically precise specifications based on
discrete mathematics. This type of mathematics is well suited for modeling discrete systems,
especially those invelving logical interactions. These formal specifications greatly facilitate
the modeling of requirements and high level design. Typically a formal language provides
the syntax and semantics for representing the specifications.

The primary types of analysis supported by formal methods are checking fhe internal
consistency of a specification and proving that the system specified (satisfles desired
properties. These types of analyses can be partially automated using computer-pased tools
that not only support the initial development and analysis of specifications, but @lso reduce
the time required for re-analysis in response to subsequent modifications or extensions. This
type of rigorous analysis is very useful for smaller, critical componehts that must gatisfy rule-
based requirements such as required to support safety and/or security functions.

c. |Benefits: Formal methods enable defects in requirements to be detected ¢arlier than
otherwise, and can reduce the number of mistakes in interpreting, formdlizing, and
implementing correct requirements. Formal methods.define formalized statements that can
be analyzed and more rigorously verified. Formal methods cause more defects to be
detected than would otherwise be the casecand provide mechanisms that gupport the
objective to guarantee the absence of cerain defects. Formal methods dan provide
compelling evidence of correctness early eanough to be useful, cheaply enough to pe feasible,
and on the basis of modeling that is simfife enough to be credible.

d. |Case Evidence: Formal specifications, proofs of correct specifications, potentjal reduced
defect delivery.

e. |Limitations: Currently formal methods can only be applied to small, critical system
components not to large, complex systems. Such methods require expertise beyond typical
software engineers- Formal methods do not guarantee a superior product. As wjth all tools,
the potential benefits of formal methods can be realized only if the tools are| judiciously
applied to suitable applications. Formal methods may provide less benefit than|anticipated
due to anomalies such as erroneous specifications or flawed verifications.

f. |References:
1" NASA, "Formal Methods Specification and Verification Guidebook for Sgftware and

Compuier Sysiems, volume 1. Planning And Technology Inserion, NASA/TP-98-
208193, Release 2.0, Washington DC, December 1998.

2. NASA, "Formal Methods Specification and Verification Guidebook for Software and
Computer Systems, Volume II: A Practitioner's Companion," NASA-GB-001-97,
Washington DC, December 1997.

3. NASA Formal Methods Web Site, http://shemesh.larc.nasa.gov/fm/

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 108 of 176

4. Sheppard, D., An Introduction to Formal Specification with 7 and VDM, McGraw-Hill,

1995.

5. Pressman, R.S., Software Engineering: A Practitioner's Approach, McGraw Hill, 1997

(4th Edition).
C.2.4 Independence, Isolation, Inoperability, Incompatibility (14)

a. Purpose:
safety/security-critical function implementation, and localization of the effects of fai

application of safety-related methods such as software FMECA (C.1.18); so
(C.1.19), and formal methods (C.2.3).

Independence - multiple, independent subsystems and completely different
enabling stimuli for critical functions are incorporated within the 'system. For so

occur before the software safety function is activated.

Isclation - critical functions are encapsulated separate from any other functiong
cause undefined interactions with the critical functions. For software, information
modularity are common methods for isolating functionality. Architecture designs
identification and functional isolation of the critical functions. Safety and securi
are typical examples of critical functions.

Inoperability - critical functions become predictably and irreversibly inoperable

Provide principles of design and implementation that facilitate effective testing,

lure.

sources of
ftware, this

might mean multiple independence conditions (e.g., multipleshardware unique signals) must

that might
hiding and
emphasize
y functions

in credible

software, this might be a fault, tolerant implementation in combination with har
system in an abnormal enviréhment would degrade to an inoperable state prior t
security breech, or transition'to a safe state.

Incompatibility - funetional interfaces are constructed so that they are incom
functions (in particular safety critical functions) with which they are not intended
For software, «this' might be implemented through a design by contract (C.2.
control specification mechanism.

Information hiding or encapsulation is a design technique that minimizes the inter
or g¢oupling of modules and maximizes the independence or cohesion of mo
intefface to each software module is designed to reveal as little as possibl

abnormal operating environments before the isclation features are comproni

a safety or

atible with
interface.
) interface

ependency
ules. The
about the

e interface

requests. This is accomplished by making the logic of each module and the data it utilizes as
self contained as possible. The likelihood of common cause failures is reduced, fault
propagation is minimized, and future maintenance and enhancements are facilitated.

c. Benefits: Facilitates reliability claims and evidence of successful implementation; provides a
consistent framework within which case evidence can be presented.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 109 of 176

d. Case Evidence: Organizing framework in which reliability/safety/security claims and
evidence can be negotiated with and presented to the customer and/or certification authority.

e. Limitations: The definitions of evidence supporting the |14 principles is not always precise and
requires considerable negotiation among customer, supplier, and in some cases the
certification authority.

f. References:
1. Harrison, R., Counseli, S., and Nithi, R., “An Evaluation of the MOOD Set of Object-

Oriented Software Metrics,” IEEE Transactions on Software Engineering, Vol. 24, No.
6. June 1998, pp 491-496

2. Leveson, N. G., Safeware: System Safety and Computers, Addison Wesley| Publishing
Company, 1995.

3. Mazzanti, F., "Coding Regulations for Safety Critical Software Deyelopment,"
Proceedings of the 2nd IEEE Software Engineering Standards)Symposium (ISESS’95),
1995.

4. Pamas, D.L., "On the Criteria to be Used in Decomposing Systems intq Modules,"
Communications of the ACM, December 1972, ppi/1053-1058.

C.2.5 Migtake/Error Proofing

a. |Purpose: Prevent the special causes that result in defects, or inexpensively inspect each
item that is produced to determine whether it is acceptable or defective. Errpr proofing
typically pertains to product designitand mistake proofing to eliminating potential
implementation/production/manufacturing related mistakes.

b. |Description: Shigeo Shingo was one of the industrial engineers at Toyota wh¢ has been
credited with creating and. fermalizing Zero Quality Control (ZQC), an approach to quality
management that relies(heavily on the use of mistake-proofing (called poka-yoke in
Japanese) devices. Théese devices are used either to prevent the special causeg that result
in defects, or to inexpensively inspect each item that is produced to determine whether it is
acceptable or defective. A mistake-proofing device is any mechanism that either|{prevents a
mistake from being made or makes the mistake obvious at a glance.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 110 of 176

Shingo identified three different types of inspection: judgment inspection, informative
inspection, and source inspection. Judgment inspection involves sorting the defects out of
the acceptable product, sometimes referred to as ‘inspecting in quality." Informative
inspection uses data gained from inspection to control the process and prevent defects.
Traditional Statistical Process Control (SPC) is a type of informative inspection as are formal
in-process reviews (C.3.5). Both successive checks and self-checks are also a type of
informative inspection. Source inspection determines "before the fact" whether the
conditions necessary for high quality production exist. With source inspection, mistake-
proofing devices ensure that proper operating conditions exist prior to actual

execution/production. Often these devices are also designed to prevent
execution/production from occurring until the necessary conditions are satisfied. This type of
device | "forci ion." i ion is i ts from

ocdurring. Self-checks and successive checks provide feedback about the outcome$ of the
profpess. Self-checks and successive checks should be used when source inspection|cannot
be flone or when the process is not yet well enough understood to develop sourcé inspection
techniques.

Ong¢ specific "error proofing" software technique is "defensive programming”, a spftware
dedign technique in which critical system parameters and requests e transition systenp states
are|verified through multiple diverse means before acting upon,theém. User interface design,
fault tolerance checks, and standard programming practices result in a more robust [system
architecture and immunity from (some) transient faults.

c. Benefits: Low cost defect prevention and removal ‘devices that promote good|quality
prattices by the persons performing the activity.

d. Cage Evidence: Identified life cycle activities that contribute to reduced spftware
defects/faults.

e. Limitations: Complexity of the activities may prevent mistake-proofing devices from being
identified and/or used effectively.

f. Reflerences:

1. | Bayer, P.C., "Using:Poka Yoke (Mistake Proofing Devices) to Ensure Quality," IBEE 9th
Applied PowerElectronics Conference Proceedings 1:201-204, 1994.

2. Chase, RB~and Stewart, D. M., Mistake-proofing: Designing Errors Out, Productivity
Press, Portland, Oregon, 1995.

3. | Grout, J.R., "Mistake-Proofing: Process Improvement Through Innovative Ingpection
TFechniques," The Quality Yearbook: 405-414, 1998.

4. Marchwinski, Chet (ed.), "Microsoft, HP Use Poka-Yoke to Squash Software Bugs,"
Productivity 18(5): 1-4, 1997.

5. Shingo, S., Zero Quality Control: Source Inspection and the Poka-Yoke System,
Productivity Press, Cambridge, MA, 1986.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 111 of 176

C.2.6 Petri Nets
a. Purpose: Identify potential race and/or deadlock conditions, particularly in real-time
applications.

b. Description: Petri nets are used to model relevant aspects of system behavior at a wide
range of abstract levels. Petri nets are a class of graph theory models which represent
information and control flow in systems that exhibit concurrency and asynchronous behavior.
A Petri net is a network of states and transitions. The states may be marked or unmarked; a
transition is enabled when all the inputs places to it are marked. When enabled, it is

permitted but not obliged to fire.

These models can be define

If it fires, the input marks are removed and each output

in purely

place from the iransition is marked instead
mathematical terms, which facilitates automated analysis such as producing
graphs.

A Petri Net fragment derived from the example found in the referefice’ [5] of
slipping, steering automobile design with Anti Lock Brakes iscillustrated b
nomenclature is fairly obvious, for example, for an abnormal steering the “syst
this and begins to make automated braking (right front, left front, right rear, le
combinations) adjustments depending on what the abnormal-stéering is. These *
and “transitions” are illustrated in the Petri net graph. Thefail states depend on
physics of the automobile and can be tied to a reliability model to predict th
average time prior to the system failure. The ayvailability models can also
percentage of time the system will be operational. Automobile design ca
appropriately adjusted to balance in an optimum way both the reliability and a
within the aesthetic constraints given to the design engineer.

reachability

a skidding,
low. The
m” detects
ft rear — or
state event”
the motion
e reliability
predict the
n then be
vailability —

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 112 of 176
abnormSteer
M abnormSteerDetect
(2
lLrS ightOverSteer derSteer i ____ »(:r
wheelsRRRF wheelsLRLF wheelsRFRR wheelsLFLR
@ @ @, Q
brakeRRRE fail StrRRRF fail STLRLE iSHRFRR fail SHLFLR
. . brak(leLRL . brakeRFRH brakeLFLR
recycleUnde
. al nderSleerFails
— cycleOverStoer overSteerFailState ppderSizerfailState
checkSteering
normalStee failSteerSensPack
steerSensPackFail
FIGURE C8—EXAMPLE SOFTWARE PETRI NET DIAGRAM (FRAGMENT)

c. |Benefits: Petri nets can be used to model an entire system, subsystems, and/or
subcomponents at conceptualy top level design, and implementation levels. They are useful
for identifying deadlock, race) and nondeterministic conditions. Particularly agplicable for
systems/software that is safety critical.

d. | Case Evidence: Identification of state conditions that could cause failures; mitigation through
design evidenceahd formal analysis that such failures can not occur;

e. | Limitations{2.-The production of Petri nets can be time consuming without thg use of an
automated)tool.

f. | Referehces:

1. Buy, U. and Sloan, R. H., "Analysis of Real-Time Programs with Simple Time Petri

Nets," Proceedings of the 1994 International Symposium on Software Testing and

Analysis (ISSTA), ACM Press, p. 228-239.

2. Jensen, K. "Coloured Petri Nets: Basic Concepts, Analysis, Methods and Practical

Use," Springer-Verlag, vol. 1, 1996, vol. 2, 1995.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 113 of 176
3. Joint Software System Safety Committee and EIA G-46 Committee, "Software System
Safety Handbook," Joint Services Computer Resources Management Group, U.S.
Navy, U.S. Army, U.S. Air Force, 1999,
4, Peterson, J. L., Petri-Net Theory and the Modeling of Systems, Prentice Hall, 1981.
5. Sheldon, F., Greiner, S., and Benzinger, M., “Specification, Safety and Reliability
Analysis Using Stochastic Petri Net Models,” Proceedings of the Tenth International
Workshop on Software Specification and Design, IEEE, November, 2000.
6. System Safety Society, System Safety Analysis Handbook, July 1993.
C.2.7 Software Integrity Checks
a. [Purpose: Identify and prevent failure scenarios where the cause for the. failufe is either
accidental or malicious) corruption of the software itself, or environfmental aslects have
accidentally changed so that the software executes under non-designed for conditipns.
b. |Description: These design techniques ensure that the code to'be’executed and the data to
be processed have not been altered and are of the correct type! Basically, these fechniques

can be divided into the following: (a) checksum checks, (b)-¢onfiguration checks 4
time state integrity checks.

Checksum tests are basically used to guarantee that'the code or data has not bee
by simply treating the code as a sequence of integers, adding them up, and che
against a value stored within the code or datagitself. These checks serve also as g
against memory failure or corruption, or virus' infection, and are typically performe)
start of the software. During operationaltasks such as software loading, this may

nd (c) run-

h modified,
Cking them
safeguard
d upon the
be further

reinforced by incorporating into the Joa@ding/communication protocols mechanis
Hamming codes (for self-correction) and Cyclic Redundancy Checks (CRCs),
prevent loading of corrupt code or-data. The files to be loaded (code or data) ma
such mechanisms to ensure their integrity prior to loading. For example, the u
signatures applied to software code or data provides a higher integrity form of
test.

s such as
n order to
also have
of digital

corrupted are compatible with the software wishing to use them. Another configuration check
can besperformed with the data to be processed (mission file, or database), if the data can
nformi.about its structural version, so software can detect formats it is not able to|process or
older versions for which it can adapt. These mechanisms are also a safegudrd against
i | i f authorized
components that may compromise a secure system. Configuration checks are made usually
“on first use” of a specific component or data file/database.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 114 of 176

Run-time state integrity checks are typically used in hard real-time systems, particularly in the
case of multitasking applications where it is difficult to predict the exact system behavior at a
given moment. Though similar to the defensive programming described in (C.2.5), no
transition system states are verified, but only a “snapshot” of the current state is taken, to
ensure that it is one of the acceptable ones. These checks may have a memory, for
example, to ensure that no subsequent checks share the same state (which may indicate a
deadlock). A characteristic of these run-time state integrity checks is that a) they are periodic
during the whole execution b) they are very simple and c) are usually carried out by an
external, interrupt-driven, program.

c. Benefits: Provide additional robustness against unexpected (and non-designed for)
anomalous behavior, lack of operational configuration, and accidental or malicious corruption
of qode or data. Checks are very local & do not impact the overall code.

d. Cage Evidence: Results of testing corrupted code, incorrect data formats, or d¢adlock
states.

e. Limftations: Impacts on component reusability, “block upgrades” (required for spftware
updates, somewhat more complex design.

f. References:

1. ARINC Report 665-1, “Loadable Software Standards”, Aeronautical Radi¢, Inc.,
January 2001.

2. | ARINC Report 667, “Guidance for the Management of Field-Loadable Software [(FLS)”,
Aeronautical Radio, Inc., May 2002.

3. | ARINC Report 619-4, Supp. 4; FAirborne Computer High Speed Data Ljoader”,
Aeronautical Radio, Inc., May 2002.

4. | AEEC Project Paper 666, “Electronic Distribution of Software”, May 2002.

5. | JA1005, SAE Surface-Véhicle/Aerospace (JA) Standard 1005, “Software Suppdrtability
Program Implementation Guidelines,” Society of Automotive Engineers, 2001.

6. | RCTA/DO-178B/ED-12B, “Software Considerations in Airborne Systemp and
Equipment,*-Federal Aviation Administration software standard, RTCA Inc., Degember
1992.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 115 of 176

C.3 Verification Techniques
C.3.1 Boundary Value Analysis
a. Purpose: Identify software errors when processing at specified parameter limits.

b. Description: During boundary value analysis, test cases are designed which exercise the
software’s parameter processing algorithms. Specific situations which are evaluated include:

- parameter below minimum specified threshold,

- parameter at minimum specified threshold

- parameter at maximum specified threshold,

- parameter over maximum specified threshold, and
- parameter within specified min/max range.

The intent is to verify that the software responds to all paramgters correctly: triggering error
handling routines if a parameter is out of the specified rangé or following normal processing if
a parameter is within the specified range. Boundary value‘analysis can also be uged to verify
that the correct data type is being used: alphabetic,numeric, integer, real, signgd, pointer,
and so forth.

c. |Benefits: Boundary value analysis enhances system integrity by ensuring that data is within
the specified valid range before operating upon it.

d. |Case Evidence: Coverage measures“for boundary values; testing results fof boundary
conditions.

e. |Limitations: May be complex and time-consuming for testing if there are multiple parameters
and boundary conditions and-possible combinatorial constraints related to how the parameter
values can be integrated.

f. |References:
1. |EC 615608-7:1998-09-15, " Functional safety of electrical/ electronic/ programmable

electtenic safety-related systems. Part 7. Overview of techniques and measures,"
International Electrotechnical Commission, 1998.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 116 of 176

C.3.2 Cleanroom

a.

Purpose: Prevent defects from being introduced and/or remaining undetected throughout life

cycle activities.

Description: Cleanroom is specialized version of the incremental software model that uses
formal methods and a statistical analysis techniques to support the measurement and
analysis of pre-release software reliability. Cleanroom analysis emphasizes the prevention of
errors, rather than just their detection and makes extensive use of formal methods and
proofs. This technique takes a holistic view of software development by promoting iterative,
top-down stepwise refinement of the total design, with correctness and verification of that
design required at each step. The Cleanroom process emphasizes rigor in specification and

design, and formal verification of each element of the resultant design r_r‘lodel using
correctness proofs that are mathematically based. Aspects of formal methods (C.2.3) may

be part of the Cleanrcom process. The Cleanroom approach also emphasizes
for statistical quality control, including testing that is based on the anticipated
software by customers. The Cleanroom Reference Model is expressed in terms
14 Cleanroom processes and 20 work products. It is intended.@s-a guide for
project management and performance, process assessment’ and improve
technology transfer and adoption.

Benefits: Cleanroom promotes error prevention and{early detection of errors,
easier and cheaper to fix them.

Case Evidence: Rigorous design activities cand measures of defect prevent
techniques such as defect removal efficiency(C.1.3).

Limitations:
requirements will be met.

References:

1. Dyer, M., The Cleanroom Approach to Quality Software Development, Jo
Sons, 1992.

techniques
use of the
of a set of
Cleanroom
ment, and

when it is

on through

Cleanroom analysis does:not determine if performance and response time

hn Wiley &

2. Linger, R.G:'and Trammell, C.J., “Cleanroom Software Engineering Referince Model,

Version .07 CMU/SEI-96-TR-022, Software Engineering Institute, Carn
University, November 1996.

gie Mellon

3. Mills, H.D., Dyer, M., and Linger, R., "Cleanroom Software Engineefing," IEEE
Software, September 1987, pp 19-24.

#—Pressmarn, R-S5Software Engmeermg—APractitioner' s Approach,vcGraw Hill, 1997
(4" Edition).

5. Prowell, S.J., Trammell, C., Linger, R., and Poore, J.H.,
Engineering - Technology and Process, Addison-Wesley, 1999.

Cleanroom Software

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 117 of 176

C.3.3 Coverage Analysis

a. Purpose: Identify which parts of the software product have been tested by a specified set of
test cases; identify an appropriate set of software test cases needed to meet test coverage
goals.

b. Description: During test planning, the set of all possible test cases is examined to determine
which test cases are redundant in that they test the same functionality and/or logic path. The
intent is to obtain the highest possible test coverage with the least possible number of test
cases. A thorough understanding of the system design and its functionality are needed
construct an effective test architecture. There are several measures of test coverage for
software, such as:

1. requirements coverage: percentage of requirements verified/validated-by) the specified
test set;

2. feature coverage: percentage of design features/functions merified/validated by the
specified test set;

3. path coverage: percentage of the total potential logic paths exercised by tHe specified
test set;

4. node coverage: percentage of decision braneh points exercised by the specified test
set;
5. statement coverage: percentage of thectotal executable lines of code exercjised by the
specified test set; and

6. equivalence class coverage: péfcentage of equivalence classes exerciged by the
specified test set.

Almost any software unit of jnterest can become a target for test coverage|measures.
Coverage analysis provides a measure of completeness and also a measufe of what
software functionality can not be tested through dynamic test methods (C.3.4) apd must be
verified by other analysis methods.

c. |Benefits: Coverage analysis provides a measure of test completeness and confijdence that
the software“product will perform as expected in its operational as well as| potentially
abnormal operating environment. Such analysis also provides valuable undergtanding for
how toreptimizing test strategies to obtain the best coverage with limited personngl resources
and.schedule time.

d. "Casetvderce—Coverage metricssuchas Tequirerments,; feature; patty, mode; statement,

equivalence class; test completeness metrics.

e. Limitations: Measuring coverage and analyzing any software that has not been adequately
tested is effective when applied as part of most dynamic test methods (C.3.4). Limitations
apply primarily to achieving high percentages of coverage due to limitations in test time
and/or theoretical limits imposed by the mathematical nature of the problem being solved by
the software implementation.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 118 of 176

f. References:

1. Beizer, B., Software System Testing and Quality Assurance, International Thomson
Computer Press, 1996. Defence Standard 00-42 (PART 2)/Issue 1, “Reliability And
Maintainability Assurance Guides, Part 2: Software,” United Kingdom Ministry of
Defence, September 1997.

2. |EC 61508-7:1998-09-15, "Functional safety of electrical/ electronic/ programmable
electronic safety-related systems. Part 7. Overview of techniques and measures,”
International Electrotechnical Commission, 1998.

3. Kaner, C., Testing Computer Software, 2" edition, John Wiley & Sons, 1993.

4. Kung, D., Hsia, P., and Gao, J., Testing Object-Oriented Software, JEEH Computer
Society Press, 1998.

5. Perry, W., Effective Methods for Software Testing, 2™ edition, John Wiley & $ons, 1999.

6. RCTA/DO-178B/ED-12B, “Software Considerations in*“Airborne Systems and
Equipment,” Federal Aviation Administration software stadndard, RTCA Inc. |December
1992.

C.3.4 Dynpamic Test Methods

a. |Purpose: Verify a system will meet stated software requirements through execlition of the
software program; detect any inherent defects)in'the software program.

b. [Description: There are many dynamictiesting methods. All these methods hgave varying
specific objectives, but generally arelintended to determine whether the software will fail
during execution. Some methods focus on showing that the software will not fail, [while other
methods focus on trying to determine if the software will fail. Selecting which dynamic test
methods are most effective for the specific application and provide the best case evidence
that the software will not failin its operational environment is part of a soﬂwareTngineering
and reliability engineering task. Some of the specific dynamic test methogls include:
functional testing, interface testing, performance testing, probabilistic testing, |regression
testing, stress testing, and usability testing. Dynamic testing frameworks typically include a
combination of these methods. Integrated with reliability failure analysis and modeling
(C.1.14, C 1,20, C.3.9) as well as coverage analysis (C.3.3), a more effective testing strategy
to achievefailure rate goals can be determined.

Functional testing verifies that the system delivers the functionality expected py the end
usef. Functional testing verifies that a system performs the functions descriped in the

f ffreatiorr f from the
requirements specification. Attention is paid to verifying that correct inputs produce correct
outputs and that all functionality is present and fully implemented. Functional testing does
not verify performance. Safety and security functionality is tested as part of the software
functional requirements.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 119 of 176

Interface testing verifies hardware/software, system software/application software, and
application software/application software interfaces. Interface testing identifies potential
failures resulting from interface design, data, and/or timing errors. Different types and ranges
of parameters are passed under varying system loads and states. Snapshots of pre- and
post-conditions are examined. Potential system integration and operational errors are
detected prior to a system being fielded. Interface testing must be conducted in the
operational environment, or a simulated operational environment, to yield valid results.
Design by contract {C.2.1) provides a design basis for defining interface testing.

Performance testing exercises a system under varied loads, states, and modes to
determine if response time, capacny, and throughput reqwrements will be met. Performance

operdtional profiles which reflect how different classes of users will use_ a system, thqg type
and frequency of transactions performed, the anticipated systemMoading, and so [forth.
Greafer weight is given to the correct operation of transactions that are performed fregliently
and gonsidered essential than those that are performed infrequently and are not esséntial.
This ppproach contrasts with typical software reliability models (C.1.14 and C.3.9) although
probgbilistic methods (C.1.9) along with probabilistic metheds can be used to evaluafe the
validity of such models. Probabilistic testing yields reliability measures that correspgnd to
how R system is expected to be used. Effective probabilistic testing is dependent ¢n an
acculate and complete set of operational profiles and the accuracy of parametef/data
distrillution assumptions.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 120 of 176

Regression testing verifies changes (corrections, enhancements, adaptations) to the
software have not introduced new errors and/or affected system performance, safety,
reliability, or security. After a change is implemented, a subset of the original test cases is
executed. The results are compared with the original results to ensure stable and
predictable system behavior. Regression testing should be performed in conjunction with
change impact analysis {(C.1.1). Regression testing minimizes the potential for unexpected
system behavior resulting from changes and/or enhancements. Test cases must be selected
carefully and perhaps additional test cases constructed so that both local and global effects
of the changes or enhancements are verified.

Stress testing determines: maximum peak loading conditions under which system will
confi ified; iti i i onduct
strgss testing to determine how a system will perform in the operational envirgament in
relgtion to specified performance requirements. Typical stress testing emphasizes behavior
at poundary and "out of boundary" conditions, so boundary value analysis.(C.3|1) can
projide guidance to constructing stress test cases. During stress) testing [system
performance is monitored under low, normal, peak and overload conditions. Apgplication
fungtionality, interfaces, memory capacity, throughput capacity, and gommunication links are
eadh "stressed" as appropriate to the application. Transaction rates are measured| as the
nurpber of simultaneous users is increased. Stress testing provides a realistic assessment of
how a system will perform in the operational environmentyunder the most challenging
cor(ditions. [t also helps identify conditions which may cause a system to enter an upknown
or ynsafe state.

Usability testing determines if a system performs’in the operational environmept in a
mahner acceptable to and understandable by the end-users. Usability testing, or [Human
Comnputer Interface (HCI) testing, is condueted by a team of end-users. The f¢cus of
usdbility testing is to verify that domain khowledge has been captured and implemented
corfectly; in particular in regard to: how asystem will be used; what a system will be uged for;
and how end-users expect to interact, with a system. The potential for induced orf invited
errgrs is examined in the context, of end-user expectations. The potential for indjiced or
invited errors and mismatches with end-user expectations/training are identified bgfore a
system is deployed. Many organizations attempt to execute the User's Mangal and
Ope¢rational Procedures as part of usability testing.

c. Benefits: Dynamic~testing methods provide verification and validation confidenpe that
requirements are met-and that defects/faults have been eliminated prior to operationalfuse.

d. Case Evidenge: Coverage measures, fault/failure data for use in reliability
estimation/prediction models, inputs to defect removal efficiency computations, demonstrated
eviflenge that customer requirements have been met.

e. Li T if not
mathematically impossible. Testing is time consuming and resource intensive, so defect
prevention and removal early in a software product's development or support cycle is more
cost effective than "testing out" the defects.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 121 of 176

f. References:

1. Beizer, B., Scoftware System Testing and Quality Assurance, International Thomson
Computer Press, 1996.

2. BS5760 Part 8: "Guide to the Assessment of Reliability of Systems Containing
Software," British Standards Institution (BSI), October 1998.

3. Defence Standard 00-42 (PART 2)/Issue 1, “Reliability And Maintainability Assurance
Guides, Part 2: Software,” United Kingdom Ministry of Defence, September 1997.

: mable
electronic safety-related systems. Part 7: Overview of techniques and megsures,"
International Electrotechnical Commission, 1998.

5. | Joint Software System Safety Committee and EIA G-46 Committee, "Software [System
Safety Handbocok," Joint Services Computer Resources Management Group, U.S.
Navy, U.S. Army, U.S. Air Force, 1999.

6. Kaner, C., Testing Computer Software, 2™ edition, John Wiley'& Sons, 1993.

7. | Kung, D., Hsia, P., and Gao, J., Testing Object-Ofiented Software, |IEEE Computer
Society Press, 1998.

8. | Perry, W., Effective Methods for Software Testing, 2™ edition, John Wiley & Sons, 1999.

9. | Pressman, R.S., Software Engineering*A Practitioner's Approach, McGraw Hil, 1997
(4" Edition).

10] RCTA/DO-178B/ED-12B, “Software Considerations in Airborne Systenfs and
Equipment,” Federal Aviation Administration software standard, RTCA Inc., December

1992.

11| System Safety Society,. System Safety Analysis Handbook, July 1993.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 122 of 176

C.3.5 Formal In-Process Reviews (Fagan Software Inspections)

a. Purpose: Identify errors in software engineering artifacts throughout the development life
cycle

b. Description: Formal In-Process Reviews, or software inspections, are a rigorous examination
of all software engineering artifacts which are undertaken to prevent, detect, and remove
defects as early as possible in the life cycle. The formal process includes: defined participant
roles; small inspection teams; preparation, inspection meeting, and follow-up procedures;
metrics for person time spent, defects found, and variations against company and industry
standards are collected. An mspechon is conducted on spemﬂed software artifacts during

ious phase

for conS|stency correctness, and completeness Inspectlons |dent|fy defects, [in artifacts,
deviations in consistency between artifacts, and the source of the deviation:\lh ¢ombination
with Root Cause Analysis (C.3.10) areas of process improvement can be.identifiedl.

Mti Design-to

Reguirements

Requirements Design Test Plan, Cases, and Procedures

Defects | Inspection Synthesisf— \
and Test
| Planning
> Code-to
Designs
Design Codi Testahle'Code
Document oding,
Defects | Inspections

Vi

6_)

Test Code
Document Element
Inspectipns Inspections

Software Product

Testing
Retests] l

Users

Enhancements

FIGURE C9—FORMAL IN-PROCESS REVIEWS ACROSS LIFE CYCLE ACTIVITIES

c. |Benefits: Defects are identified and removed early in the life cycle, when it is sghedule and
cost efféctive to fix them. Recognized as a best practice by industry when cnducted in
accordance with the defined process.

d. |Gase Evidence: Measures of defects (number, severity, category) found|and effort
(preparation, meeting, follow-up) expended for a wide range of artifacts, including
requirements, design, source code, test plans, build documentation, user guide, and system
interface specifications. Supports the defect removal efficiency (C.1.3) measures.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 123 of 176

e. Limitations: Formal In-Process Reviews (software inspections) are somewhat labor
intensive, particularly inspections of large size source code implementations. Tailoring and
selection of inspection artifacts is recommended for large projects. Inspections of software
requirements, design, and test artifacts are most effective. Stratified inspections of software

source code by criticality and feature coverage is also effective.

f. References:

1. Fagan, M. E., "Advances In Software Inspections," IEEE Transactions on Software
Engineering, Vol. 12, No. 7, July 1986, pp 744-751.

Ebenau, R. G., and Strauss, S. H., Software Inspection Process, McGrawsH

electronic safety-related systems. Part 7: Overview of techniques and
International Electrotechnical Commission, 1998.

C.3.6 Operational Profile

a. | Purpose: Define a quantitative characterization of howdhe software will be used.

Il, 1994.

4. |EC 61508:1998-09-15, "Functional safety of electrical/ electionic/ prggrammable

measures,"

b. | Description: The reliability of a software-based préduct depends on how the cogmputer and

product as if it were in the field. The operational profile, a quantitative charac
how the software will be used, is therefore\essential to understand any software

Engineering (C.1.20) effectively and-with any degree of validity. The operationa
similar objectives as formal scenario analysis (C.1.5).

A profile is a set of independent possibilities called elements, and their associate

example, the profile_is [A, 0.6..B, 0.3...C, 0.1]. The operational profile is
independent operations that a software system performs and their associated
Developing an eperational profile for a system involves one or more of the
illustrated in the figure below.

other external elements will use it. Making a good reliability estimate depends o testing the

erization of
application.

It is a fundamental concept which must-be understood in order to apply Software Reliability

| profile has

i probability

of occurrence. |f operatign A occurs 60 % of the time, B occurs 30 %, and C occurs 10 %, for

the set of
robabilities.
ive profiles

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 124 of 176

User Profile

System-mode
Profile

7

Functional Profile
*# Functions , Environ. Variables
e[nitial List , Final Function List
*Explict/Imp. , Occurrence Probs,

=
4

Operational Profile
* Divide Exec. intoruns , Partition input space
” » Identify input space Qccurrence Probabilities .

Test Selection \

FIGURE C10—OPERATIONAL PROFILE DERIVATION

c. Benefits: The benefit-to-cost ration in developing and applying the-operational pfofile is
typically 10 or greater. This is accomplished through well*defined elicitatign and
dodumentation of customer operational use requirements, more\efficient test selectjon that
redluces test time, and more complete customer-based test Coverage that reduces|fielded
faults. Cost to develop operational profiles is estimated-at. 1 % of software project|cost or
less with a savings in test cost alone at 10 % or more.

cugtomers. This is particularly the case for products that have multiple customers that span
multiple domains of application. This does-not mean operational profiles can [not be
deyeloped, only that the possibility of missing situations of customer use can occur.

d. Liq‘itations: It may be difficult to obtain the necessary information about system use ffom the
u

e. References:

1. | Musa, John D. “Operational Profiles in Software Reliability Engineering,| IEEE
Software, March 1993, pages 14-32.

2. | Musa, John D.,/Software Reliability Engineering, McGraw-Hill Book Company, NY,
1999.

3. | Lakey, Péter and Neufelder, Ann Marie, “System and Software Reliability Asgurance
Notebook,” Rome Laboratory Report, Griffiss Air Force Base, Rome NY| 1997.
hitp://AWww.cs.colostate.edu/~cs530/rh/

4. | “Lyu, Michael. Handbook of Software Reliability Engineering, McGraw Hill, 1996.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 125 of 176

C.3.7 PeerReviews

a. Purpose: Find and correct defects as early as possible in the development life cycle through
review by peer experts that may be internal or external to the organization.

b. Description: Any type of technical or management product or process may be reviewed,

whether it is a deliverable to the customer or internal to the project and whether it is in an
intermediate or final state. These reviews and inspections are interactive, with a focus on
constructive criticism. Peer reviews focus on the work product being reviewed and not on the
author of that product. Peer reviews are normally conducted to certify products prior to their
proceeding to the next phase of development.

These structured examinations are used to

impact, or when education of a group is necessary. The common features ef'the peer review
process include: (1) a triggering event, (2) identification of the review patticipants and their
role in the review as either facilitator, author, reviewer, or recordes, (3) a scheglule for the
review, (4) distribution of the product to be reviewed prior to the péerreview meeting, and (5)

the actual review, with action items assigned for any unresolved issues o
identified during the review. All action items have a desighated assignee a
completion/re-review date.
classified according to type, source, and severity to foster continuous process im
Formal in-process review (C.3.5) is one particularyform of peer review. The
authority for a product may require several formal peer reviews by external exp
product acceptance.

questions
hd required

It is common for defects identified during a peer r¢view to be

provement.
certification
bris prior to

c. |Benefits: More and different types of defects are identified because peer revigws involve
multiple stakeholders from different perspectives. Defects are identified early in the life cycle
when it is more cost effective to fix them.

d. [Case Evidence: Review repoits provide directed evidence for use in verifying and/or
validating that reliability requitements and/or activities are being adequately accomplished.

e. |Limitations: Peer reviews are generally not useful for identifying performance glefects, but

may identify problems-that could affect performance.
References:
1. Ebénau, R. and Strauss, S., Software Inspection Process, McGraw-Hill, 199

2. . Gilb, T. and Graham, D., Software Inspection, Addison-Wesley, 1993.

Publishing Co., 1995.

4. IEEE Std-1028-1994,"IEEE Standard for Software Reviews," IEEE Compu
December 1997.

3. Ran, S, Netrics _and Models T —Software Quatity _Engineernng, Addison-Wesley

ter Society,

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 126 of 176

C.3.8 Reliability Bench Marking

a.

Purpose:
products compared to "Best-In-Class" products with respect to reliability metrics.

Process used in identifying gap(s) and improvement opportunities for target

Description: Reliability benchmarking activities may include benchmarking metric selection,
test design and planning, failure criteria definition, sample size determination, data collection
and analysis, assessment of design differences that could affect product reliability, and use of
this information in a Benchmarking process. In general, Benchmarking is the search for best
practices that, when applied, lead to superior performance. The application of Benchmarking

study findings should produce increased customer satisfaction, improve competitive
advantage. and shorten product development cycle time.

Benchmarking should be performed early in the product development phase'so that findings
can be implemented and reliability can be designed into the product. | Reliability
Benchmarking can be applied in circumstances such as the following:

1. when there is an unexpected decreasing trend of products. teliability perfojmance and

customer satisfaction;

2. when an organization wants to improve the reliabilityspetformance of their
that they become competitive with the best products in the industry;

broducts so

3. when it is important to consider alternative designs for a specific product of search for
best solutions relating to design concerns;and

4. when it is important to determine the upper limits of reliability performance that can be
expected by comparison with the: "Best-In-Class" products in a similar|application
domain;

Benefits: Provides data and_quantitative evidence to convince management ofl a gap that

must be closed; identifies .désign leverage, new technology, and quality issuef
added engineering and ¢ontinuous improvement; provides reliability-related infq
system/software design'specification, key testing concepts, and reliability target se

Case Evidence: AReliability metrics and methods considered to be "Best-In-Class"
Limitations ‘Wlay be difficult to get benchmarking data for systems/software

applicatighydomain; may lead to a "follower" mindset rather than attempting to
appropriate for the specific application.

5 for value-
rmation for
tting.

n a similar
do what is

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 127 of 176

f. References:

1. Basili, Vic, Boehm, Barry, and others, "What We Have Learned About Fighting
Defects," Proceedings of the Eighth |IEEE Symposium on Software Metrics
(METRICS™02), IEEE Computer Society, 2002, http://www.CeBASE .org

2. Defence Standard 00-42 (PART 2)/Issue 1, “Reliability And Maintainability Assurance
Guides, Part 2: Software,” United Kingdom Ministry of Defence, September 1997.

3. Dujmovid, J., "Quantitative Methods for Design of Benchmark Suites," Proceedings of
the 4th International Workshop on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems (MASCOTS '96). IEEE. pp 162-166. 1996.

4. Mukherjee,A. and Siewiorek, D.P., "Measuring Software Dependability,'by Robustness
Benchmarking," IEEE Transactions on Software Engineering, Vol23, No. 6, June
1997.

C.3.9 Reljability Estimation Modeling

a. |Purpose: Estimate software reliability for either the present etlat some future timg based on
historical, test, and/or operational failure data.

b. |Description: Estimation models apply statistical techniques to the observed failiires during
software testing and operation to forecast the product's reliability. Musa's Softwarg Reliability
Engineering method (C.1.20, Appendix D) provides a comprehensive approgch to the
application of reliability estimation modeling.A ‘generic 11-step process can be followed for
estimating software reliability. These steps.should be tailored to the application project and
the current life cycle phase:

- identify the software application being evaluated;
- specify the reliability requirement for this software;
- allocate the reliability requirement;

- define failure\categories and conditions;

- define-operational environment and profile(s);

- define test cases and procedures that correspond to the operational envirgnment and
profile(s);

—setectappropriate-softwarerettatitity modets;

- collect data from test results;

- estimate parameters from historical data;

- validate the model; and

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 128 of 176

Some of the more common reliability estimation models include:

perform the analysis.

Exponential, Musa basic, Musa legarithmic, Littlewood/Verrall, and Schneidewind.

TABLE C5—COMMON SOFTWARE RELIABILITY ESTIMATION MODELS

Duane, General

Model Name | Formula for Failure | Estimation/data required Limitations and
Rate Constraints
Musa Basic Aty = Aexpl-(A /v,)t] | Estimate of initial failure rate A, Software must be
PP I PP exercised
Ul LolITidaic U otdl CAPCUICU 1dllUrcs
Assumes n6)hew faults
Mu) = A[1-piv Vo ; ; ;
Number of detected faults p at introdugégin dorrection
some time t Assumes nuymber of
residdal faults|decreases
linearly over time
Musa Aty = AJ(A0t + 1) Estimate of initial failure rate A, Software must be
Logarithmic or Estimate of failure intensity detay,b exercised
. Assumes no phew faults
AMu) = Aexp(-6u) [\Iumber of detected faults(u at time | ;& 0 i e ction
Assumes nymber of
residual faults|{decreases
exponentially ¢ver time
Schneidewind | aexp(-pi) Faults detected in equal interval i Software must be
Estimation-of failure rate at start of | €xercised
first interval Assumes no phew faults
Estihation of proportionality | introduced in gorrection
eonstant of failure rate overtime | Assumes ngmber of
residual faults|decreases
exponentially gver time
Littlewood|{ o/t + F(I)] Estimate of number of failures o Software must be
Verrall Estimate of reliability growth ¥ exercised
Assumes undertainty in
correction progess
c. |Benéfits: These models are useful in estimating the current software failure rate and whether
thisdailure rate is within the software reliability requirement and associated confidence limits.
i i iabili ihued defect

removal through testing or maintenance support. Model accuracy can be estimated based
on statistical analysis (C.1.21) and probabilistic methods (C.1.9). Estimates can be made for
how many corrective maintenance changes and the level of associated support resources
that can be expected if the product is fielded at the existing level of software reliability.

d. Case Evidence:

Current software reliability, accuracy/confidence in software reliability

estimates, estimate of additional testing to reach software reliability requirement and/or goal,
verification of conformance to acceptance criteria, safety/security certification evidence.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 129 of 176

e.

f.

C.3.10 Roo¢t Cause Analysis

a.

Limitations: All of these models are used late in the life cycle so correcting requirements or
design deficiencies to improve reliability is not a cost-effective option. These models do not
identify how to improve reliability. Model assumptions may not hold true such as the

assumption that no new faults are introduced during fault correction.
References:

1. ANSI/AIAA R-013-1992, “AlAA Recommended Practice for Software
February 1993.

2. BS5760 Part 8. "Guide to the Assessment of Reliability of Systems
Software," British Standards Institution (BSI), October 1998.

3. Defence Standard 00-42 (PART 2)/Issue 1, “Reliability And Maintainability
Guides, Part 2: Software,” United Kingdom Ministry of Defence, September

4, IEEE Std. 982.1-1988,
Software," IEEE, 1988.

"IEEE Standard Dictionary of Measures to Produ

5. |EEE Std. 982.2-1988, "IEEE Guide for the Use-&f the Standard D
Measures to Produce Reliable Software," IEEE, 1988-

6. Lyu, M., Handbook of Software Reliability Engideering, McGraw-Hill, 1996.
7. Musa, J., Software Reliability Engineering, McGraw-Hill, 1999,

8. Peters, J., Software Engineering: An'Engineering Approach, John Wiley & §

Purpose: Determine the initiating event that caused a system to fail and/or a d
introduced in the system implementation.

Description: Root cause analysis is an investigative technique that is used to dets
when, and why a defect was introduced and why it escaped detection in earlier ph
cause analysis is-cohducted by examining a defect, then tracing back step by s
the design and the' decisions and assumptions that supported the design to the sq
defect. Roeticause analysis can be applied to any situation, product, or proce
where thetiftent is to not only fix a specific instance of the problem, but to fix the
instanees “of the problem within the application population through develop
comprehensive corrective action. Root cause analysis supports defect prey
continuous process improvement.

Reliability,”

Containing

Assurance
1997.

ce Reliable

ctionary of

ons, 1999.

efect to be

rmine how,
hses. Root
ep through
urce of the
5Ss problem
bl potential
ment of a
ention and

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012 Page 130 of 176

Root cause analysis typically consists of four steps:
1. gather data about the problem;

2. analyze the data for possible root causes, solutions, and other potential instances of
the problem;

3. communicate prevention action plans for decision; and

4. implement the recommended action.

whgre this problem might also exist. Since problems may well involve interaetions with
sysfem components other than the target software, analyzing the data should inyolve a
crogs-functional team to determine what data to collect and what analysis techniqye(s) to
usel. The cross-functional team will provide effective solutions where therroot cause ifivolves
multiple components as well as the software. Once the root cause isddentified and vefified, it
is important to consider whether there are organizational process'improvements thgt might
preyent future recurrence of the same problem in the same or otlier projects. A proper root
cause analysis process should identify where in the organization a policy/procedure |can be

problem from recurring. Quality Function Deployment(€:1.11) is a technique that jcan be
used to implement a root cause analysis processhand represent the results as|quality
improvements.

Benefits: Root cause analysis is a disciplined technique for solving problems using a pre-
defined, proven process. Historical data provides evidence of process improvemert. The
progess of conducting root cause analysis may uncover defects in other areas gs well.
Supgports multiple defect removal and\future prevention of similar defects through process
improvement. This is particularly.important within critical systems involving safety, sfecurity,
and/or high reliability assurance.

Cage Evidence: Evidence of specific defect removal and root cause source identification;
supports defect remoyvalefficiency computation; provides qualitative confidence that all
common cause defects-have been removed.

Limjtations: Root cause analysis can be time consuming on large complex systems,
particularly when resources are limited.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 131 of 176

f.

References:

1. Akao, Y., Quality Function Deployment, Productivity Press, January 1990.

2. Akao, Y. and Mizuno, S., QFD: The Customer-Driven Approach to Quality Planning and

Development, Productivity Press, April 1994.

3. Root Cause Analysis: |mproving Performance for Bottom Line Results
Center, Inc., 501 Westover Avenue, Hopewill, VA 23860, 1999.

, Reliability

4. Root Cause Analysis Handbook, ABS Group, Inc., 1000 Technology Drive, Knoxville,

TN 37932 1999

C.3.11 Testability Analysis, Fault Injection, Failure Assertion

a.

b.

e.

Purpose: Determine if a system design can be verified and is supportable:

Description: Testability analysis began as a research and develepment project
1970s. The goal was to derive an indicator of the testability of\a software prod

in the late
ct from an

analysis of the controllability and observability of internal nodes.” This indicator wds based on
measurements of the number of unique operators, namber of unique operands, total
occurrence of each operator, total occurrence of eachidperand, and number of Ynique logic

paths. This algorithmic analysis uncovers potentialfaults in the form of unreach
unused nodes, and non-deterministic conditionis, * Since the original project

ble nodes,
testability

analysis has been expanded to include analyses of traceability, repeatability, piedictability,

functional testability, accessibility, fault injection, and failure assertion.

Another aspect of testability analysis is:the study of requirements specifications t¢
if they are testable-that is, whether tests or other analysis methods can produce
evidence that the requirements have been met. If it is determined that the requir
either ill-specified or there are.no practical methods to verify or validate that the rg
can be met, then the requireiments statements in question may be appropriately
be testable.

Benefits: Testability~analysis will help identify whether or not requirements o
design can be vgrified, and if not, the requirements and/or design modules that
modified. Because this occurs prior to the testing phase the cost of rework is red
cost saving§.extends to the operations and support phase as well.

Case’ Evidence:
efficiency measure.

Removal of potential faults and improvement of the defe

determine
convincing
ements are
quirements
modified to

[a system
heed to be
uced. This

ct removal

Limitations:

lestability analysis 1s most useful when applied to large complex systems.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 132 of 176

o

C.41

f.

Mal

Configuration Management

a.

References:

1. Beizer, B., Software System Testing and Quality Assurance, International Thomson
Computer Press, 1996.

2. Friedman, M. and Voas, J., Software Assessment: Reliability, Safety, and Testability,
John Wiley & Sons, 1995.

3. Kan, S.H., Metrics and Models in Software Quality Engineering, Addison-Wesley
Publishing Co., 1995.

4, Kaner, C., Testing Computer Software, 2" edition, John Wiley & Sons, 1993.

5. Kung, D., Hsia, P., and Gao, J., Testing Object-Oriented Software IEEH Computer
Society Press, 1998.

6. Parkinson, J.S., Classification of Programmable Electronic Systems Operation for
Testability, Directions in Safety-Critical Systems, Springer-Verlag, 1993, p. 6f-83.

7. Perry, W., Effective Methods for Software Testing, 2™ edition, John Wiley & $ons, 1999.

8. Pressman, R.S., Software Engineering: A Practitioner's Approach, McGraw Hill, 1997

(4" Edition).

ragement Techniques

Purpose: Identify system items requifing control (configuration items), control
and change of these items, record and report the status of the items and chang
and verify the completeness and eorrectness of the items.

Description: Configuratioh Management (CM) is the process of identifying and 4
configuration items in a system, controlling the release and change of these items
the system lifecyclesrecording and reporting the status of configuration items &
requests,
Configuration Management is practiced in one form or another as part of ar
engineering-project where several individuals or organizations have to coorg
activitiesy~\While the basic disciplines of Configuration Management are comm
hardware. and software engineering projects, there are some differences in emph
the nature of software products. [3]

IfaYal W LW

and verifying the completeness and correctness of configurafion

he release
e requests,

lefining the
throughout
nd change
items.
y software
inate their
on to both
asis due to

volution of

(a3 43 o £ 'H LA + 4 £ + 4o
LDUTIVWATC \JUIIIIHUIGI.IUII IVIGIIGBUIIIGIII. \U\JIVI} o d DYOLUIII LA%4 IIIGIIGHIIIU are
software products, both during the initial stages of development and during al
maintenance. A software product encompasses the complete set of computer

| stages of
programs,

procedures, and associated documentation and data designated for delivery to a user. All

supporting software used in development, even though not part of the softwa
should also be controlled by SCM.

re product,

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 133 of 176

The SCM system is the collection of activities performed during a software engineering
project to:

. determine and identify those entities of the software product that need to be controlled;
. ensure those entities have necessary and accurate definitions and documentation;

. ensure changes are made to the entities in a controlled manner;

. ensure that the correct version of the entities/software product are being used; and

. ascertain, at any point in time, the status of an entity (e.g., whether a specific entity is
completed, being changed, waiting to be tested, or released to the customer).

SCM is performed within the context of several basic configuration management functions,
including:

. Configuration |dentification;

. Configuration Control (change control)
. Configuration Status Accounting

. Audits and Reviews

. Release Processing

SCM provides a common point of integration for all planning, oversight, and implemegntation
activities for a software project or product line. It provides the framework (labeling and
identification) for interfacing differept “activities and defining the mechanisms (Fhange
controls) necessary for coordinating parallel activities of different groups. SCM also pfrovides
a framework for controlling computer program interfaces with their underlying support
harfware, and coordinating &oftware changes when both hardware and software fay be
evdlving during development or maintenance activities. SCM provides management ith the
visipility (through status‘accounting and audits) of the evolving software products thgt make
technical and managetial activities more effective.

c. Benefits: Provides baseline identification of development and released software groduct;
projides a snapshot of dynamically changing software; tracks concurrent modification of
moglules or-components; ensures the orderly release and implementation of new or frevised
soffware products.

d. Li” ﬁo.t;uu 1o, :_UI :GIHUI IJIUjGUtD, UUIIf;yUIat;UII IIIqIIGBUIIICI It IC\.{LI;ICD QUtUIIIatU\.: L OIS tO
adequately implement version control and issue tracking along with a link to the operational
change request/failure reporting system.

e. Case Evidence: Software product version identification, software artifact version
identification, issue tracking metrics throughout life cycle, key process link between change
management and FRACAS (C.4.2) system.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 134 of 176

f. References:

1. ANSVIEEE Std 1042-1993, "IEEE Guide to Software Configuration Management, "
IEEE Computer Society, 1993.

2. CMMI-SE/SW-Continuous, V1.02, "CMMI for Systems Engineering/Software
Engineering, Version 1.02, Continuous Representation," CMU/SEI-2000-TR-019,
November 2000.

3. CMMI-SE/SW-Staged, V1.02, "CMMI for Systems Engineering/Software Engineering,
Version 1.02, Staged Representation," CMU/SEI-2000-TR-018, November 2000.

4. | Hass, Anne M J, Configuration Management Principles and Practice, Addisofi\Wesley,
2003.

5. | SQAS20.01.00-2000, "Software Configuration Management (SCM): A\Practical (Guide,"
United States Department of Energy, Quality Managers Software, Quality Asgurance
Subcommittee, April, 2000. hitp://cio.doe.gov/sgas/

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 135 of 176

| Software Design & Development Process I

or Life Cycle
Change
—— smu-ce *
bnftware ¢ "dP
D““m““‘s -'] | Tuvestigate & Autharize
R E E Z E Authorized
Change
<
-t
-
-
v v]
g f
| Testing and Verification I | Software Change Process I<_4

o —— _ Source
Code
bnt‘tware
Dut uments

-l]
{

Source
Code

Access Controlled By Software C onfiguration M anager

Document Software Se¢eure
M anagement Archive Software
Center Repository

quu. ce —— i
C°d° nmm Tssue Code
-l] Rccord Records

| Build Procedure Issue Procedure

Issue
Authorized

M Issued
Copies

FIGURE C11—ELEMENTS OF A SOFTWARE CONFIGURATION MANAGEMENT SYSTEM
C.4.2 Failure Reporting Analysis And Corrective Action System (FRACAS)
a. |Purpose: JThe purpose of a FRACAS is to document, track, analyze and correct reported

failures .in)a closed loop fashion. It is also a management tool for focusing| on critical
concerns, resolution and resources dedication for timely program execution.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012

Page 136 of 176

Ideally, however, the system level

b. Description: A FRACAS is normally implemented at the system, hardware and software level

The software FRACAS is similar to a hardware FRACAS in many ways.

and typically involves more than one physical entity.
FRACAS will coordinate the failures that are recorded between the hardware and software.
Failures are

recorded, corrected and root causes of the failures analyzed. This is typically done by a
Failure Review Board. While hardware failures may be analyzed to find product specific
defects, software failures are analyzed more to find deficiencies in the software engineering

A hardware FRACAS will track information that is pertinent to correcting the

process.

hardware failure. A software FRACAS will track information that is pertinent to reproducing
the software failure so that it can be corrected. It will also track the root cause of each failure
so that a Pareto analysis (C.1.8) can be performed on a group of failures at some later time.

J

| System Level FRACAS
7 é:\%
4! f-‘\'
/ ‘ Software Level FRACAS
1 -~ Symptoms
| stepsto
‘}‘ I‘eproduce

D | Conditions
- Inputs

l" ‘/‘J
Failure event reported

A
-7 Not Corrected ‘\“ Priority

s

[{
{
| . .
\ Failure event reviewed ~Properly 7 Status
Not software OR does not E‘é S ~ \'«)
require corrective action H ‘| “l Root.cause
Failure event corrected | J/ Corfective
‘ — action
information

i

Failure event verified as
correct and closed

Root causes analyzed D

I &
mprovements to developmen
process made

SHHHHBHIRH Y,

FIGURE C12—ELEMENTS OFA SYSTEM-SOFTWARE FRACAS

c. Ber
acd|
dog

exp

e.
res
dats is potproperly selected or is exposed to noise.

efits: A FRACAS: provides:a(single reliability data source that permits quick and gfficient
ess to reliability data; Supports for root cause investigation to resolve co
uments the initial incident to the verification of the corrective action; and builds ¢n past

erience and provides better future reliability targets and risk assessment.
e Evidence: Failure data (testing and operational field), root causes of failures.

d. Cas
Limjtations: (AYFRACAS: does not prevent failure from occurring in the first place; r
burces that could be used for failure prevention; may yield false quality perspective if the

hcerns;

bquires

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 137 of 176

f. References:

1. Lakey, Peter and Neufelder, Ann Marie, “System and Software Reliability Assurance
Notebook,” Rome Laboratory Report, Griffiss Air Force Base, Rome NY, 1997.

http://www.cs.colostate. edu/~cs530/rh/

2. MIL-HDBK-2155, “Failure Reporting, Analysis and Corrective Action Taken,"
Department of Defense.

C.4.3 Life Cycle Process Standard

vide a-se =fa os that enable the repeatable definition, develgpment, and
support of a software product within the context of its system application.

b. [Description: A life cycle process standard defines what activities are o be| conducted
throughout the definition, development, and support of a software product. The activities
include typical process inputs, procedural steps, and outputs along with the policies that
constrain the activities and resources needed to accomplish the-activities. The ¢rganization
of the activities into sequential phases conducted within a defihed time period/sghedule and
with planned resources defines the specific project life cyéle model that is fo be used.
Typical core software engineering activities include)requirements analydis, design,
implementation, test, and change modification. Théerfe are many software management
activities that support the core activities, such aspreject management, risk management,
logistics management, configuration management, quality engineering/assuFance, and
specialty engineering (e.g., engineering support in the areas of reliability, majntainability,
safety, security, logistics). Systems engineering and associated life cydle process
standard(s) should include an integration>of applicable hardware and software life cycle
process standards. Other enterprise management activities may include marketing, business
planning, and other such intergroup_c¢orporate functions.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 138 of 176

Organizational Processes
Management Infrastructure Improvement Training
Program/System Management Processes <
| Project Management " | Product Product Product Operation/
i Planning e ' |Pefinition| | Development| | Deployment| | Maintenance
[AcquireSuwpply | Development In-Service
» System/Software Engineering —
Discipline Specific Technical Processes e o
=gl £|_F Tl ow|
SP|FE|E2| = | 2 |22 |58
“E|AE |2E S P87 ...
- N
Technology Integration]
| | | [(Interdisciplinary Coordinatiop) | | |
Supporting Processes
Apdit Reviews CM QA V&V Problem Resolution
FIGURE C13—EXAMPLE INTEGRATED:EIFE CYCLE MANAGEMENT SYSTEM

c. Benefits: A well-defined life cycle process standard, when appropriately taflored for
application use, provides confidence that the customer's requirements have beer| defined,
aftivities are conducted that-provide evolutionary evidence that the requirements fare being
met, and evidence exists that demonstrates the requirements have been met for fthe initial
dplivery to the customer_as well as any subsequent updated releases. A well-défined life
cycle process standard establishes the core engineering base upon which a|software
reliability program(can be integrated. Without this core engineering base it is unlikgly that a
spftware reliability. program will be effective.

d. Qase Evidence: Life cycle activities that are core elements of a software reliability] program
cain besdefined as part of the software reliability plan and assessment evidence pirovided in
the case’as to whether those activities have been conducted in accordance with thel life cycle
plocess standard.

e. Limitations: Cost, schedule and performance balance may require tailoring of the selected
life cycle process standard; tradeoffs often affect reliability.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE

JA1003 Reaffirmed MAY2012 Page 139 of 176

f.

References:

1. CMMI-SE/SW-Continuous, V1.02, "CMMI for Systems Engineering/Software
Engineering, Version 1.02, Continuous Representation,” CMU/SEI-2000-TR-019,
November 2000.

2. CMMI-SE/SW-Staged, V1.02, "CMMI for Systems Engineering/Software Engineering,
Version 1.02, Staged Representation," CMU/SEI-2000-TR-018, November 2000,

3. ANSVIEEE Std 830-1998, "IEEE Recommended Practice for Software Requirements
Specifications, " IEEE Computer Society, 1998.

C.4.4 Pro

4. |EEE Std-1220-1998, "IEEE Standard for Application and Management of the Systems
Engineering Process," IEEE Computer Society, December 1998.

5. |EEE/EIA Std 12207.0-1996, “Software life cycle processes,” IEEE-Compufer Society,
March 1998.

6. ISO/IEC 12207, “Software Life Cycle Processes,” August 1, 1995.

7. ISO/IEC 15288, “Systems Engineering — System Life Cycle Processes,”| Edition 1,
November 8, 2002.

8. ISO/TR 15497, "Development Guidelinessfor Vehicle Based Software, [the Motor
Industry," Motor Industry Software Reliability Association, ISBN 0 9521156 0 7,
November 1994.

9. Pressman, R.S., Software Enginegring: A Practitioner's Approach, McGraw Hill, 1997
(4th Edition).

10. RCTA/DO-178B/ED-12B,, “Software Considerations in Airborne Sysfems and
Equipment,” Federal Aviation Administration software standard, RTCA Inc.,|December
1992.

cess Assessment

Purpose: Progess assessment helps software organizations improve by identifying critical
problems withtheir software processes and establishing improvement areas and piorities.

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

SAE JA1003 Reaffirmed MAY2012 Page 140 of 176

b. Description: A software process assessment is a review of a software organization to advise
its management and professionals on how they can improve their operation. A software
process audit is a review to determine whether there are gaps in how an organization follows
its officially approved process. Both types of reviews are important to provide evidence of
software engineering capability. Both types of reviews can be conducted using a wide range
of evaluators. Evaluators may be independent, non-independent, external, internal,
requested by management, imposed by an outside customer or certification authority, or
some combination. One common characteristic of evaluators is that they should be software
professionals, knowledgeable in the targeted application areas, and trained in the
assessment/audit process to be applied. The process assessment is just part of a
comprehensive Software Process Improvement (SPI) approach.

Start Iﬁ —Quetionnaires
Assess
Findings, knl ings,

Software
Recommendations

ommitments

Define

Software
Quality
Reports & Lessons and Guals

Learned

The Organization and its|
Software Process

Establish
Software
leasurementg

v Pevelop
ction litfprovement |
Planis) A .

HIGURE C14—EXAMPLE SOFTWARE PROCESS IMPROVEMENT CYCLE

https://saenorm.com/api/?name=9fbfc6cfb89bdf21ce9d6972e7a94f03

