TECHNICAL ISO/IEC
REPORT TR

24772

First edition
2010-10-01

Information technology — Programmming
languages — Guidance tolavoiding
vulnerabilities in programming languages
through language selection and use

Technologies de l'information>— Langages de programmatipn —
Conduite pour éviter les ytilnérabilités dans les langages de
programmation a travers'la sélection et I'usage de la langue

Reference number
ISO/IEC TR 24772:2010(E)

© ISO/IEC 2010

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2010

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20

Tel. +412274901 11

Fax + 4122749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

ii © ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

Contents Page
oY=V T o vi
Yo T ¥ ot o vii
1 Yoo PP 1
2 NOFMAtiVE rEfEr@NCESccevevereeennnennnnnnnenmnenensnsssbiotiefeesenenens 1
3 Terms and definitions, symbols and conventionsccceeeeceiiiiiiieeneccciennnennecesmetee dennnnneefereennnnes 1
3. Terms and definitions, symbols and conventions...........ccccoiiiiiiiiiiiiiiiiiiiinndl o e 1
3. SYymbols and CONVENTIONS........cccieeeeeeeiiiiiiieiiecceeererenneneeeereeeennsseeeesseeennnsesorsatossannnsssesessesnns]eeeenennns 3
4 BasiC CONCEPLS ...ciieeiiiieniiiieiiiienieriennieriensiestenssessenssesssnsssssanssessnnsssssadbstirssessssnnsssssensasssnnssesdnnssennas 4
4, L\ Lo A T3 Yoo o1 o SRS R 4
4. APPIOACKH ...t rernesseee s e reeennssseeesenesnnnsssnesaiaebanbonnnserenennnnnnsssenesannssnneseneeunnnananns 4
4, Intended AUdIENCE.......cccuvueriieimininininiisss e isnssns oo 4
4, How to Use This DOCUMENTccciiiiiimiiiiiiiiieneneiiinineese s NiTorrenennnssssssssnessnnssssssssssssnsssssssssasdsnnnnsssns 5
5 Vulnerability iSSUESccceiiiiiiiiiiiiiiiiiiiiii e e sssssssse s dsneneneas 8
5. Issues arising from incomplete or evolving language specificationsccccervveeeenccccereneeeefecennnnes 8
5. Issues arising from human cognitive limitationscccceveviiiiiiiiiiiiiiieniirrreeee e, 11
5. Issues arising from a lack of predictable eXeeUtionccceeveeeeeecciiiiirieennicceeenneennencceseneneeneoceeeenns 12
5. Issues arising from the lack of portahility-and interoperabilitycccccceeiirirrreeeccccinnnneceeeennns 12
5. Issues arising from inadequate langliage intrinsic SUPPOIt.......ccceviiiiiiiiiniiiiiiinininneneeeneneneeeefeeeenenn 13
5. Issues arising from language featifes prone to erroneous USE..........ccceeeeeeiierinneennesssensnnneneeoreennnn 13
6 Programming Language Vulnerabilitiesccceeiiiiiiiiieeiiiiiniiireccinninerecescsesnsseenesssseses feennnnnes 14
6. GENEIAl ciiiiiiiiiiiiiiiieiere Lot teneeeeeneneneneseesssmsssnsessfosasannns 14
6. Obscure Language Features [BRS]ccciviieeieieeiieieeeeeeeeeeeeeeeeeeeeeeeeeeeesesnssssssssssssssssssssssssssnss]asasanans 14
6. Unspecified Behaviour [BQF]......ccccciiiiiiiiiiiiiiiiiiiieiiieiieieieseeeseseseeeseseeeeessesesssessssssssssssssssssssss]ssssnnse 15
6. Undefined BERAVIOUF [EWF]cciuteeueiiiiiiiiienneiiiiereeeennsesieerereeensssseseessssssssssessssssssssssesssessssa]essesene 17
6. Implementation-defined Behaviour [FAB]cccceiiiiiiiiiiiiiiiiiiiiiicieneneneenesesesesesesessssssssssssssssssssnnnns 18
6. Deprecated Language Features [MEM]......ccuuuciiiiiiieeeenrcieiineeennncseeeeneennnsssesssssennnssssssssssssa]osseaenes 20
6. Pré-processor Directives [NIVIP]......cccciiiiiiiiiiiiiiiiiiiiieiiiesessesesesesesesesesesessesesssesssssssssssssssssssnns]ssssnnnns 21
6. Choice of Clear Names [NAI]....cceuuiieiiiiieemnecceeiinienneneceeeeteenensnsssesseeesnnssssssssssssnsssssssessssnnnnsssfoseenenns 23
6. Choice of Filenames and other External Identifiers [AIJN].......cceeueeereeeeeeeeeeeeeeeeenenenenenenenenenessennnne. 25
6.10 Unused Variable PXY R] .iuiiiriiiiiiiiiieiiiniitieiiisicrsssiesssrsstesssrsssssssrsssssssstsssssassesssssenssssssssnssssssssnnss 26
6.11 Identifier Name ReUSE [YOW]ciiiiiireuriieiiieienenenicieeeeeeensssssseressssnsssssesessssssssssssessssnsssssssessssnnnnnes 27
6.12 NamMeSPACE ISSUES [BIL]...cceetreeeuneiiiererennnnieeeererennnsseeeeereeennssssesesesesnnsssssssessssnnsssssssssssnnsssssssessssnnnnnes 30
6.13 Type System [IHN] ..ottt esre s essss s e s e e s s s sannss s e s s sesss s snnnsasassesansnen 31
6.14 Bit Representations [STR].....cccccciiiiiiiiiemmnieeeeieienenneeeeeeeeennsssseeeseeesnnssssessessssnssssssssssesnnsssssssssessnnnnnes 34
6.15 Floating-point Arithmetic [PLF]ccceeueeeeeeeeeeememnnennnsnmnssssssnsssssssssssnssssssssssssssssnnsnsssssssssssssssssssssasns 35
6.16 ENUMErator ISSUES [CCB]ccceeuuuueierererennnneeeererenmnsseeesseeennssssesssesesnnsssssssessssnnsssssssssssnnnssssssessssnnnnnes 38
6.17 Numeric CoNVErsion Errors [FLC]ciuueeurieeerieremennrieeeeeereensssesereessansssssesesssssssssssssesssnnssssssssssssnnnsnes 40

© 1SO/IEC 2010 — All rights reserved iii

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53

7.1
7.2
7.3
7.4
7.5
7.6

String Termination [CIMY]o iiiiriiiiiiireiicceeeerrenneneeeesereennsssseesssessnsnssssssssssnnssssssssssennnsssssssenanns 42
Boundary Beginning Violation [XYX] ...ccccoeicciiiiiiiiiiiinnniniiinssenenssenissssssssnssssesssssssssssnssessssssas 43
Unchecked Array INdeXing [XYZ]cccceiiiiemeereiiiiiiiennneieeererennnssseesesessnssssssssssssnssssssssssssnnssssssssssses 44
Unchecked Array Copying [XYW] ...cccoiiiiiiiiiiiiiiiiiiiininennissesssesesesess s sssssssnsssesssssessssssnsnessssssas 46
BUFfer OVErfloOW [XZB].....ccuuucceiiiiituueiieeiretenensneeeeterennssseseserensssssssesessssnssssssssesssnssssssssssssnnsssssssensnns 47
Pointer Casting and Pointer Type Changes [HFC]........ccccceiiiiiiiiiiiicinnniniinnisneeseesssssssssesssesssnenas 49
Pointer Arithmetic [RVG]ccoiiiiieeeiiiiiiiitiieecceeeteeeneeeeeeserennnsssseeseeeesnsssssseserssnnsssssssssssnnsssssnsesenes 50
Nu i [XYH] 81
Dangling Reference to Heap [XYK] ...cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiinininininsnssssesssesesesesessssesssssssssssssssssnsnns 52
Templates and GeNnerics [SYM]cvieeiiiiiiiiitiiecieiiiiieneneeseesteeennnssseseseressasssssessssssnsssssssssssssnngtnbosde 54
INKEIIEANCE [RIP].ceee i iiiiieeieeieieeertreeeeeeeeeeetenensseeeeeeeeennsssseseseeennnssssssseesssnnsssssssesssnnssssssssssnnnsodosbeneens 56
Inifialization of Variables [LAV].....uuu i ciiiiiiimeiciiiiteeeeeseierereessssseeseeessnssssessseesssssssssessss sbastossesenenns 57
Wrp-around Error [XYY] ... iiiiiiieiiieieieeneeeeeeeeeneeeneeennssssnssssssssssssssssssssssssssssssssssssssbolososssssssssssasans 59
Sign EXtENSION EFror [XZI] ...cceeeeeeiiiiiiieeieccieeiieennesnseeereneennsnsssessesesnsnsssssssssssnsnnsbsbéeitonnnnnenssssesennanes 60
Operator Precedence/Order of EValuation [JCW].....cciiceirvvereneeeriiciissrnnneeeesiieresssnsnsseseessssssnsansnes 61
Side-effects and Order of Evaluation [SAM]cccieeeiiiiiiiiienenciiennieeennnaindlaterennnnnsessnerennnsssssssesenes 63
Likely Incorrect Expression [KOA]ccceivvvvmrriiiininiinnncnnnnennnnssnsssssens (e innnneennennnnscsseeeneneennns 64
Dead and Deactivated Code [XYQ].....ccouiiiimmurreeiiiirennneeeeererennnnnesesbaitlennnnceeeseeesnssssssesssssnnsssssssesenes 66
Swijtch Statements and Static Analysis [CLL]ccceeeeriiiiiiirereeeed et eniieeneneneeeeeeeeeeeenenesessnsnsnssssnsnnnes 68
Demarcation of CoNtrol FIOW [EOJ]ccciiiemueeiiiiiiiiennneeeeadiiintneneceserenennnssssssssesssssssssssssssnsssssssesanes 69
Logp Control Variables [TEX]cccccieieiereiireiererennnenneeneesesirnnenneneneneeeeesesesesssessssssssessssssssssnsnsssnssnnnns 70
OFfftby-0N€@ Error [XZH] ..o.uuiiiiiieeiiiieeeenerieeeceeeeeeeesbontioteseeeennsssssesssessnsssssssssessnnssssssessssnnnsssssssenenns 71
Strjctured Programming [EWD]ccceeeeeeiiieieeeeeedieeneneneeeneneeeeeeeeeeeeeeseeeessssesesesssssssssssssssssnssssnsnnnns 73
Pagsing Parameters and Return Values [CSJ] ..o iieiirireieerceeerereeeenneeeeeseeeensssssesesennnssssssenenes 74
Dangling References to Stack Frames [DCIMi...ccciiiiiiiiiieieiiiienieeieeeeeeeeeseeeeeeeeeeeseseesesssessssssnssssssnnnes 77
Subprogram Signature Mismatch [OTR] ieee e iiiiiieieecceieiireeeeneieeeereeennnsseeesereeennsssseeesssennnssssseseseens 79
REQGUISTON [GDL].....uuciiiiiieiueiiieieieneneniveseeseennnsnssessasennnssssssssssnnnssssssssssssnnsssssssesssnnsssssssssssnnsnsssnsesanns 80
Refurning Error Status [NZN] ..t iiieirreeeetteeneneeeeeeerennnsseeesereeensssssessesssnssssssssssennnnsssssenenns 81
Termination Strategy [REU] ..ielu. e eeiiieiiitiieccceeeterneneneeererenansssesesesessnssssssssesssnnnsssnsssssssnnansnnnns 84
EXtra INtrinsics [LRIM... .ot ccciciciciiicieieisienesessssssssssssesesesesssssessesssenesesesesesesesesessesesssessnsnsnsnsnnnnnnnn 85|
Type-breaking Reinterpretation of Data [AMV]cccieeercieiiiiieeeenceieiiieeenneceesseeeensnssesssessssnnssssenes 87
IMIEMOTY LEaK XYL i rireeeeeeeereeeeererereseresesesesssesssessssesesssesseseessesssenesesesesssesesesessssesssessnsnsnsnsnnnnnnnn 89
Argument Passing to Library FUNCtions [TRJ]...cccuueuiiiiiiiiieeeciiiiiirernennceeseneeennnsseseseeennnsssssssesnnnnnes 90
Dynhamically-linked Code and Self-modifying Code [NYY].......ccoerrvcimiiiiiiniiiisnenneniisncsseeeneneenees 91
Libfary Sighature [NSQ]ccccciiieiesesssessssssenssssesssessssssssssssssssssssssssssssssnsnss 92
Unfanticipated Exceptions from Library Routines [HIW]cccecieiiiiiiiiieiiieeeeeeeeeeeeneeeeeeeeeeeesseesensnnne 93
Application VUINErabilities.........cccueiereriimmmeieiiiiiiniiimiiiimimiiimns 95
Adherence to Least Privilege [XYN]....cccuuuiiiiiieiemeeemememmmmmmmmmmmemsmsmmmessnss 95
Privilege SandboxX ISSUES [XYO] ...ccuuiiiiiiiiiinnnnneriiiiiiiissnsnneneisissssssssssnssessssssssssssnssssssssssssssssnsnassssssss 95
Executing or Loading Untrusted Code [XYS] ...cciiiiiiiiiiiiiiiiiiiiiiiiiiincscseseneseeeeeeesesessesesesessnsnsnssssnsnnnes 97
Unspecified Functionality [BVQ]ccccoiiiiiiiiiiiiniiiniiiieeeeesesesesssssssssssssssssssss 98
Distinguished Values in Data Types [KLK].....cccccccuererermmmemennmmenenenenemenensnsnsssssssssssssssssssssssssssssssnsnes 99
AV =T 0 To TV e Tol T Y=) 70, [N 100

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

7.7 Resource EXRauStion [XZP]cccceeeeceiiiiiiiiennniiieieieennnnsieeseneeennnssssesssesennssssssssssennnssssssssssssnnnssnssses 101
7.8 INJECHION [RST].cciiieiiiiiiiiiieeieeieeeneeeeeeeeeneeneennnnensnsnsssnssnsnsnsnnnnnsnsnnnne 102
7.9 Cross-Site SCHPLING [XYT] e iiiiiiiiieiiiiiieiiteenneeeeeereeennnsseeeeserennnssssssssesennsssssssssssnnnsssssssensssnnnssnssaes 105
7.10 Unquoted Search Path or Element [XZQJ......cccccccreuummmunnnnnnnrsssasnns 108
7.11 Improperly Verified Signature [XZR]ccccceeiiiieemurieiiiiieeemnieeerereeemnssieeeeressnnnsseessesessnsssssessssssnnnsnes 108
7.12 Discrepancy Information Leak [XZL]ccccccmeiiiiiiiiiininieniiniiniieeenenninssesssnsessessssssesssssenssssessses 109
7.13 Sensitive Information Uncleared Before Release [XZK]......cccceirireeeuicecrrieeemnnnceeenneeennseseseseennnnnnes 110
7.14 __ Path Traversal [EWR] wuiii ittt ettt et et ettt oottt et oA oA AAAAtt A A At A A A ARy e s 00 oo s 111
7.15 Missing Required Cryptographic Step [XZS]ccceeeeeiiiiieremnciiiereireennnieeeereeennnsseeseeeeeennssennetes Mosanens 113
7.16 Insufficiently Protected Credentials [XYM]ccuuuiiiiiiiiieeciiiiiiieennneieeeeeeeennnsscesseseeesmybasdessesunnnnes 113
7.17 Missing or Inconsistent Access CONtrol [XZN] ...cceueeeerrireeeeniecerereeennnceceereeennnsseenns fodentoneeenenaedunnnnns 114
7.18 Authentication Logic Error [XZO)]cceeeeeeeeeeeeenennnnnsnssnnssssssssssssssssssssnsnsssssssssssoohostonsansssssssssafosanans 115
7.19 Hard-coded Password [XYP]cceeeeeeeeememenenenenenennnsnsssnsnsnsssssssssssssssssssssssssbolosorsessssssssssssnsssafosanans 117
Annex A (informative) Guideline Selection Process.......ccccccuviiiiiiiiiiniiiinnnnnnnen i tennnnnneeeeeeeseeesesessseefeeeenns 118
Al SeleCtion ProCeSS.....ccciiiiiiieiiieiiereneneeersmessmsssssssssssssssssssssssssssssssssssosnssdossssssssssssssssssssssssssssssssfosssas 118
A.p Cost/Benefit ANAIYSIScccevreiiirrriiieirrericssreeressnnreseesnreesesssshobeenneesesssnnessessannesessannessessnne sessnne 118
AB Documenting of the selection ProcCessccccceceeiiiieeenecee e fiaattfaneeeeeeeeeennnnsesesesennnsssssssesssnnns]eeeenns 119
Annex B (informative) Template for use in proposing programming language vulnerabilities...........J....... 120
B.1 6.<x> <short title> [<unique immutable identifier>]............cuuuueeeeeeeeeeeeeeeeeeeeeeeeveeeeensnsnsssnne]osannns 120
Annex C (informative) Template for use in proposing application vulnerabilities.........cccceceeeeeeeeeeeenecleeeenns 122
(o § 7.<x> <short title> [<unique immutable identifier>]cccccccceverererererrereneneeeeneneseeensssnsssnne]sssnnns 122
Annex D (informative) Vulnerability Outline an@List........cccciiiiiiiiiiiiiiiiiiniiininnnenenee e 123
D.L Vulnerability OULINeccoiiieieei et rereeeesesseseseeennsssssssseeennnssssssssasennssssssssse dunnanes 123
D.p QYT =T =T T 1 Y T S Y 125
Annex E (informative) Language Spécific Vulnerability Template.......cccccevvriiiiiiiiiiiiiiincceeeeeeececeeeeeenecfeeeees 127
E.1l <language>.1 Identification of standards...........cccciveeeeriiiiiiiiireeciciiniineercnceennreeeeessseneneeeneefoeeenn 127
E.2 <language>.2 General terminology and conceptsccccvviiiiiiiiiiiiiiniie e 127
E.3 <language>.<x> <Vulnerability Name> [<3 letter tag>]cccvviviiriiinininnnininininnnn o 127
23] o1 [T Y0 T o] 1) o RRPRPRT FPPPN 129

© ISO/IEC 2010 — All rights reserved \'

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR

24772:2010(E)

Foreword

ISO (the

technolog

International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information

ISO and IEC have established a joint technical committee, ISO/IEC JTC 1

Internation|

The main
Standards

al Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part2.

task of the joint technical committee is to prepare International Standards. Draft Intern
adopted by the joint technical committee are circulated to national bodies for veting. Publica

an Internafional Standard requires approval by at least 75 % of the national bodies casting’a vote.

In exceptid
that which
publish a T
every five

Attention i
rights. ISO

ISO/IEC T
Subcomm

nal circumstances, when the joint technical committee has collected data.of a different kind fr|
is normally published as an International Standard (“state of the art”, foriexample), it may dec
echnical Report. A Technical Report is entirely informative in naturé@and shall be subject to re
ears in the same manner as an International Standard.

5 drawn to the possibility that some of the elements of thisidocument may be the subject of
and IEC shall not be held responsible for identifying any or-all such patent rights.

R 24772 was prepared by Joint Technical Comfittee ISO/IEC JTC 1, Information techn
ttee SC 22, Programming languages, their environments and system software interfaces.

htional
ion as

bm
de to
view

patent

ology,

Vi

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

Introduction

All programming languages contain constructs that are incompletely specified, exhibit undefined behaviour,

are implementation-dependent, or are difficult to use correctly. The use of those constructs may therefore

give rise to vulnerabilities, as a result of which, software programs can execute differently than intended by

the writer.

attackers to compromise the security or privacy of a system.

In some cases, these vulnerabilities can compromise the safety of a system or be exploited by

Th
ap
SO
us|
th
an

It

coj
Ar
su

Ful
co|
in

is Technical Report is intended to provide guidance spanning multiple programming languages,s0
plication developers will be better able to avoid the programming constructs that lead to vuinerah
ftware written in their chosen language and their attendant consequences. This guidance can alsg
ed by developers to select source code evaluation tools that can discover and eliminate séme cons
ht could lead to vulnerabilities in their software or to select a programming language«that avoids
ticipated problems.

hould be noted that this Technical Report is inherently incomplete. It is,not possible to provide a
mplete list of programming language vulnerabilities because new weaknesses are discovered cont|
v such report can only describe those that have been found, characterized, and determined to ha
fficient probability and consequence.

rthermore, to focus its limited resources, the working group developing this report decided to def
mprehensive treatment of several subject areas until future editions of the report. These subject 3
lude:

e Object-oriented language features (Although some simple issues related to inheritance are
described in RIP)

e Concurrency

e Numerical analysis (although some simple items regarding the use of floating point are desc
PLF)

e Scripting languages

e Inter-language operahility

e Llanguage-specific.annexes

that
ilities in
be
tructs

nually.
e

1%
—

reas

ibed in

© ISO/IEC 2010 — All rights reserved

vii

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

Technical Report ISO/IEC TR 24772:2010(E)

Information technology — Programming languages —
Guidance to avoiding vulnerabilities in programming languages
through language selection and use

1 Scope

This Tdchnical Report specifies software programming language vulnerabilities to be avoided in-the’development
of systems where assured behaviour is required for security, safety, mission critical and business critical Joftware.
In gengral, this guidance is applicable to the software developed, reviewed, or maintained.for any application.

Vulnerpbilities are described in a generic manner that is applicable to a broad rangé.of programming languages.

2 Nprmative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.

ISO/IEC 80000-2:2009, Quantities and units — Part 2: Mlathematical signs and symbols to be use in the ngtural
sciencgs and technology

ISO/IEC 2382-1:1993, Information technology. < Vocabulary — Part 1: Fundamental terms

3 Terms and definitions,(symbols and conventions

3.1 Terms and definitions

For the purposes of thisdocument, the terms and definitions given in ISO/IEC 2382—1 and the following dpply.
Other terms are defined where they appear in italic type.

3.1.1
language vulnerability

prope of a programming language) that can con

vulnerabilities in programs written in that language

Note 1: The term "property" can mean the presence or the absence of a specific feature, used singly or in
combination. As an example of the absence of a feature, encapsulation (control of where names can be
referenced from) is generally considered beneficial since it narrows the interface between modules and can
help prevent data corruption. The absence of encapsulation from a programming language can thus be
regarded as a vulnerability. Note that a property together with its complement can both be considered
language vulnerabilities. For example, automatic storage reclamation (garbage collection) can be a

© ISO/IEC 2010 - All rights reserved 1

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

vulnerability since it can interfere with time predictability and result in a safety hazard. On the other hand,

the absence of automatic storage reclamation can also be a vulnerability since programmers can mistakenly

free storage prematurely, resulting in dangling references.

3.1.2

application vulnerability

security vulnerability or safety hazard, or defect

3.1.3

security Julnerability

weaknesg in an information system, system security procedures, internal controls, or implementation that ¢

be exploi

3.14

ed or triggered by a threat

safety hagard

potential

source of harm

Notd 1: IEC 61508—-4: defines a “Hazard” as a “potential source of harm”;.where “harm” is “physical inj

dam

hge to the health of people either directly or indirectly as a result@f,damage to property or to the

envifonment”.

Notd 2: IEC 61508 is titled “Functional safety of electrical/electronic/ programmable electronic safety-n]

systdms”, with part 4 being “Definitions and abbreviations”s Hence within IEC 61508 the “safety” contd

“safdty hazard” is assumed.

Notd 3: IEC 61508 cites ISO/IEC Guide 51 as the source for the definition.

Notd 4: Some derived standards, such as UK\Defence Standard 00-56, broaden the definition of “harm”

inclu
dam

3.15

hge).

safety-critical software

software

for applications where failure can cause very serious consequences such as human injury or death

Noteg 1: IEC 61508~4: defines “Safety-related software” as “software that is used to implement safety

functions in a(safety-related system.

Notg 2:/Notwithstanding that in some domains a distinction is made between safety-related (can lead 1

ould

ury or

elated
bxt of

to

de material and environmental damage (not just harm to people caused by property and environmental

o any

harml-and-safetv-critical-Uife threatening) this Technical Report uses-the term-safety-criticalfor-all
7 Y 3 5717 1 Ty

vulnerabilities that can result in safety hazards.

3.1.6
software

quality

degree to which software implements the requirements described by its specification and the degree to which
the characteristics of a software product fulfil its requirements

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

3.1.7

ISO/IEC TR 24772:2010(E)

predictable execution

property of the program such that all possible executions have results that can be predicted from the source code

Note 1: All the relevant language-defined implementation characteristics and knowledge of the universe of

ex

ecution must be known.

Note 2: In some environments, this would raise issues regarding numerical stability, exceptional processing,

ar

Note 3: Predictable execution is an ideal that must be approached keeping in mind the limits.of hum|

Ca
en
Py
pr

Note 4: The following terms are used in relation to “Predictable execution”.

Ndte 5: This Technical Report includes a clatise on Unspecified functionality. This notion is related to

un
ap

3.2
3.2.1

For theg
where

3.2.2

1 .
U CUTTICUTTETIU EAXTCULIOTT.

pability, knowledge, availability of tools, and other factors. Neither this Technical Reportnof any s
sures predictable execution. Rather this Technical Report provides advice on improving‘\predictabi
rpose of this Technical Report is to assist a reasonably competent programmer to@pproach the id
pdictable execution.

Unspecified behaviour: A situation where the implementation ef‘a.language will have to make s
choice from a finite set of alternatives, but that choice is not:in\general predictable by the progrg
for example, the order in which sub-expressions are evaluatéd in an expression in many languag
Implementation-defined behaviour: A situation where-the implementation of a language will hg
make some choice, and it is required that this choice€_ bé“documented and available to the progr3
Undefined behaviour: A situation where the definition of a language can give no indication of w
behaviour to expect from a program — it can be’some form of catastrophic failure (a ‘crash’) or c
execution with some arbitrary data.

bpecified behaviour, which is a characteristic of an application, nor the language used to develop t
blication.

Symbols and convéntions

Symbols

purposes of this document, the symbols given in ISO/IEC 80000-2 apply. Other symbols are defir
they appedt/in this document.

Conventions

an
tandard
ity. The
eal of

bme
mmer,
bs,

ve to
mmer.
hat
bntinued

neither
he

ed

Progra

H 1 oy | | 4 Ry | H = £ +
g TdiTgUadg T LURTIT alTU S YTTLALLILC TURTT I appPTal IrCOuUT 1T TUTTL

ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IECT

R 24772:2010(E)

4 Basic Concepts

4.1 Notin Scope

This Technical Report does not address software engineering and management issues such as how to design and

implement programs, use configuration management tools, use managerial processes, and perform process

improvement. Furthermore, the specification of properties to be assured is not treated.

The speci

While thi
among th
level desi
rather th

4.2)

Guideline
times mo
to make |
the write
vulnerabi

accumuldted.

43 1

The inten
critical pn
software
other tha

As descri
criticality
ensure th
example

That shod
applicatiq

fication of an application is not within the scope.

b Technical Report does not discuss specification or design issues, there is recognition thatdounda
e various activities are not clear-cut. This Technical Report seeks to avoid the debate about where
bn ends and implementation begins by treating selected issues that some might consider design is
hin coding issues.

Approach

s based on this Technical Report are likely to be highly leveraged in/that they are likely to affect m
re people than the number that worked on them. Therefore guidelines such as these have the pot
arge savings, for a small cost, or to generate large unnecessary.costs, for little benefit. For this rea
rs of this Technical Report have taken a cautious approach\to identifying programming language
ities. New vulnerability descriptions can be added ovér time, as experience and evidence are

ntended Audience

ded audience for this Technical Report.is’those who are concerned with assuring the existence of

pperty in the software of their system; that is, those who are developing, qualifying, or maintainin
system and need to avoid language constructs that could cause the software to execute in a mann
h intended.

ped in the following patkagraphs, developers of applications that have clear safety, security or miss
are expected to belaware of the risks associated with their code and could use this Technical Repg
at their development practices address the issues presented by the chosen programming languag
by subsetting.or providing coding guidelines.

Id not'be taken to mean that other developers can ignore this Technical Report. A weakness in an
nthat’of itself has no direct criticality may provide the route by which an attacker gains control of

ries
low-
sues

hny
ential

son,

g a

a

system o

&l : N " L el TR gl s oy th ;e o]
Tidy ULTITTWIST UISTUPL LUTTTUSLTEU dPPITILALUIUTIS LTTdl aif© 5altTly, STLUTILY UT TTTISSTUTT Cititdl.

It is hoped that such developers would use this Technical Report to ensure that common vulnerabilities are

removed

or at least minimized from all applications.

Several specific audiences for this International Technical Report have been identified and are described below.

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

4.3.1 Safety-Critical Applications

Users who may benefit from this Technical Report include those developing, qualifying, or maintaining a system
where it is critical to prevent behaviour that might lead to:

e |oss of human life or human injury, or

e damage to the environment.

4.3.2 Qnr‘nrify-l‘rifirnl Arr\rr\lirnfinnc

Users \vho may benefit from this Technical Report include those developing, qualifying, or maintaining a pystem
wherelit is critical to exhibit security properties of:

¢ | confidentiality,
e | integrity, and
o | availability.

4.3.3 | Mission-Critical Applications

Users \vho may benefit from this Technical Report include those devéloping, qualifying, or maintaining a pystem
wherelit is critical to prevent behaviour that might lead to:

o | property loss or damage, or
e | economic loss or damage.

4.3.4 | Business-Critical Systems

Users \vho may benefit from this Technical. Report include those developing, qualifying, or maintaining a pystem
whose|correctness and integrity are essential for successful operation of a business or enterprise.

4.3.5 | Modeling and Simulation Applications

Peoplg who may benefit fremrthis Technical Report include those who are primarily experts in areas othgr than
programming but need to,use computation as part of their work. Such people include scientists, engineefs,
economists, and statisti¢ians. They require high confidence in the applications they write and use becausg of the
increading compleXity of the calculations made (and the consequent use of teams of programmers each
contriljuting expertise in a portion of the calculation), or to the costs of invalid results, or to the expense pf

individualcalculations implied by a very large number of processors used and/or very long execution times

needed

motivate the need felt by these programmers for the guidance offered in this Technical Report.
4.4 How to Use This Document

This Technical Report gathers language-independent descriptions of programming language vulnerabilities, as
well as selected application vulnerabilities, which have occurred in the past and are likely to occur again. Because
new vulnerabilities are always being discovered, it is anticipated that this Technical Report will be revised and
new descriptions added. For that reason, a scheme that is distinct from Technical Report sub-clause numbering

ISO/IEC 2010 — All rights reserved 5

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

has been adopted to identify the vulnerability descriptions. Each description has been assigned an arbitrarily

generated, unique three-letter code. These codes should be used in preference to sub-clause numbers when

referencing descriptions.

The main part of this Technical Report contains descriptions that are intended to be language-independent to the

greatest possible extent. Future editions will include annexes that apply the generic guidance to particular

programming languages.

This Tech
e P
g

o T

C

o |

v

a
o (

Y
The follo
include te
checks. T
importan
insufficie
run-time
prohibitiy
enforce s

Clause 2
Clause 4

Clause 5,
vulnerabi

Clause 6,
programf

mdividual organizations may wish to write their own coding standards intended{o reduce the num

. ! 1 1 . sl 1 TN . .
nedi RCPUIL IdS UECTT WTTLLETT WILTT SEVET AT PJUSSIUIC USdgesS T ITHTTU.

rogrammers familiar with the vulnerabilities of a specific language can reference the guide-forymo
eneric descriptions and their manifestations in less familiar languages.

pol vendors can use the three-letter codes as a succinct way to “profile” the selection,of vulnerabi
bnsidered by their tools.

Liinerabilities in their software products. The guide can assist in the selection of vulnerabilities to b
Hdressed in those standards and the selection of coding guidelines to ke/enforced.
rganizations or individuals selecting a language for use in a projectmay want to consider the
Liinerabilities inherent in various candidate languages.

ving clauses include suggestions for ways of avoiding the Yudlnerabilities. It should be noted that th

he former are likely to be appropriate to all applications. For some applications, it is relatively mor
L to ensure that potential run-time errors are eliminated during development because there may k
t opportunity to recover from them. For long-running simulations, run-time checks may increase
to the point where the prediction loses value, or to the point where the cost of calculation becom
e given the value of the simulation results. Source code checking tools can be used to automatica
bme coding rules and standards.

brovides the basic concepts used for this Technical Report.

Vulnerability Issues), provides rationale for this Technical Report and explains how many of the
ities occur.

Programiming Language Vulnerabilities, provides language-independent descriptions of vulnerabil
hinglanguages that can lead to application vulnerabilities. Each description provides:

brovides Normative references, and Clause 3 provides Terms, definitions, symbols and conventions.

ities

ber of
e

ese

chniques that can be applied during development, anththose that must be implemented as run-time

11}

the
bs

tiesin

® a

summary of the vulnerability,

e characteristics of languages where the vulnerability may be found,

e typical mechanisms of failure,

e techniques that programmers can use to avoid the vulnerability, and

e ways that language designers can modify language specifications in the future to help programmers

mitigate the vulnerability.

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

Clause 7, Application Vulnerabilities, provides descriptions of selected application vulnerabilities which h

ave been

found and exploited in a number of applications and which have well known mitigation techniques, and which

result from design decisions made by coders in the absence of suitable language library routines or other

mechanisms. For these vulnerabilities, each description provides:

e asummary of the vulnerability,
e typical mechanisms of failure, and
e techniques that programmers can use to avoid the vulnerability.

Annexg¢s A through C are templates and guidelines that were used in the identification, selection, and\crdation of
the vulnerabilities that were generated for clauses 6 and 7. They can be used to guide the generation of future

language vulnerabilities and application vulnerabilities.

Annex|D, Vulnerability Outline and List, is a categorization of the vulnerabilities of this réport in the form

hierardhical outline and a list of the vulnerabilities arranged in alphabetic order by theirthree letter code|.

Annex E, Language Specific Vulnerability Template, is a template for the writing of programming languag

of a

b specific

annexgs that explain how the vulnerabilities from clause 6 are realized in that programming language (or{show

how tHey are absent), and how they might be mitigated in language-spéeific terms. Future revisions of thiis

Technifal Report are planned to contain language-specific annexes that are developed using Annex E.

ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

5 Vulnerability issues

Software vulnerabilities are unwanted characteristics of software that may allow software to behave in ways that
are unexpected by a reasonably sophisticated user of the software. The expectations of a reasonably
sophisticated user of software may be set by the software's documentation or by experience with similar
software. Programmers introduce vulnerabilities into software by failing to understand the expected behaviour

(the software requirements), or by failing to correctly translate the expected behaviour into the actual behaviour
of the software.

This Techphical Report does not discuss a programmer's understanding of software requirements or.the
completeness of the requirements. This Technical Report does not discuss software engineering,issues per fse.
This Techhnical Report does not discuss configuration management, build environments, codeschecking tools, nor
software ftesting. This Technical Report does not discuss the classification of software vulnerabilities according to
safety or gecurity concerns. This Technical Report does not discuss the costs of software'vulnerabilities, or the
costs of greventing them.

This Techhical Report does discuss a reasonably competent programmer's failure to translate the understoqd
requirempnts into correctly functioning software. This Technical Report degs discuss programming languag

[

features known to contribute to software vulnerabilities. That is, this Technical Report discusses issues aris|ng
from thoge features of programming languages found to increase(the frequency of occurrence of software
vulnerabilities. The intention is to provide guidance to those who wish to specify coding guidelines for theif own
particulaf use.

A prograthmer writes source code in a programming language to translate the understood requirements info
working Joftware. The programmer selects and codes constructs specified by a programming language with the
intention|of achieving a written expression of the'desired behaviour.

A program's expected behaviour might be-stated in a complex technical document, which can result in a complex
sequencyq of features of the programming language. Software vulnerabilities occur when a reasonably competent
programmer fails to understand.the totality of the effects of the language features combined to construct the
software] The overall software'may be a very complex technical document itself (written in a programming
language|whose definition(is;also a complex technical document).

The recommendatiofis-contained in this Technical Report might also be considered to be code quality issueg. Both
kinds of i$sues might'be addressed through the use of a systematic development process, use of
developnpent/analysis tools and thorough testing.

5.1 Issues arising from incomplete or evolving language specifications

While there are many millions of programmers in the world, there are only several hundreds of authors engaged
in designing and specifying those programming languages defined by international standards. The design and
specification of a programming language is very different from programming. Programming involves selecting
and sequentially combining features from the programming language to (locally) implement specific steps of the
software's design. In contrast, the design and specification of a programming language involves (global)
consideration of all aspects of the programming language. This must include how all the features will interact

8 © 1SO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

with each other, and what effects each will have, separately and in any combination, under all foreseeable

circumstances. Thus, language design has global elements that are not generally present in any local

programming task.

The creation of the abstractions which become programming language standards therefore involve consideration

of issues unneeded in many cases of actual programming. Therefore perhaps these issues are not routinely

considered when programming in the resulting language. These global issues may motivate the definition of

subtle distinctions or changes of state not apparent in the usual case wherein a particular language feature is

used.
langua
to the

For exa

the subbprogram. This may be allowed to keep compatibility with earlier versions of the language where

usage
Specifi
progra
standa

A reas¢nably competent programmer therefore may not consider the full meaning of every language fea

used, g
conseg

Furthe
effects

5.1.1

Compi
are the
crucial
agreed
pedigr

Often,
aims tq
compil
securit

\uthors of programming languages may also desire to maintain compatibility with older versions.g
e while adding more modern features to their language and so add what appears to be an incons
anguage.

mple, some languages may allow a subprogram to be invoked without specifying the'correct signa

vas permitted, and despite the knowledge that modern practice demands thie signature be specifi
cally, the programming language C does not require a function prototypge(be within scopel. The
mming language Fortran does not require an explicit interface. Thus,language usage is improved
Fds specifying that the signature be present.

s only the desired (local or subset) meaning may correspond to the programmer's immediate inte
uence, a subset meaning of any feature may be prominent in the programmer's overall experienc

r, the combination of features indicated by a complex programming goal can raise the combinatio
making a complex aggregation within whichhSeme of the effects are not intended.

Compiler Selection

er selection is important to ensuré.a’system operates safely and securely. Compilers are importar
intermediary between the hutman readable source code and the machine readable binary code.

standards, should be treated as any other commercial off the shelf software that has an unknown
be.

developers analyze the source code to detect any code that can negatively impact security or safe

solve onepart of the problem. After the source has been compiled, there is a need to be sure th
er did-not insert any logic (maliciously or inadvertently) into the binary that compromises the systé
v atrsafety. This is especially important because this type of vulnerability will be inserted into ever

f their
stency

ture of
uch
bd.

by coding

ture
htion. In

o)

hs of

t as they

This
step is often overlooked and'compilers, unless coming from a trusted source and developed accorlding to

ty. This
bt the

P M

V piece

of soft

loot ol +l
Valr T uTat uricLUTITYTITT "PTULTS5TS.

To combat against this, developers of security or safety critical systems should only use compilers from a trusted

source. The trusted source should also provide evidence that the compiler is free from anomalous behaviour;

similar to the way RTCA’s DO-178B defines qualifiable tools. In addition, developers of critical software can

1 This feature has been deprecated in the 1999 version of the I1SO C Standard [4].

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

perform source to binary traceability to ensure the compiler has not inserted any undesired logic into the binary
code.

If a compiler has many options, then developers should consider if the options to be used in the project are the
same options used when the compiler was validated.

5.1.2 Issues arising from unspecified behaviour

While every language standard attempts to specify how software written in the language will behave in all

circumstgdnces, there will always be some behaviour that is not specified completely. In any circumstance, \of
course, alparticular compiler will produce a program with some specific behaviour (or fail to compile.the program
at all). Where a programming language construct is insufficiently defined, different compilers may)geherate
different pehaviours from the same source code. The authors of language standards often have an
interpretgtions or defects process in place to treat these situations once they become knoWwn, and, eventually, to
specify ofe particular behaviour. However, the time needed by the process to producé.corrections to the
language|standard is often long, as careful consideration of the issues involved is needed.

When programs are compiled with only one compiler, the programmer may pet be aware when behaviour hot
specified |by the standard has been produced. Programs relying upon behaviour not specified by the langudge
standard |may behave differently when they are compiled with differenticompilers. An experienced programhmer
may chogse to use more than one compiler, even in one environmént, to obtain diagnostics from more than one
source. Ih this usage, any particular compiler must be considered'to be a different compiler if it is used with
different pptions (which can give it different behaviour), or is\a.different release of the same compiler (whigh may
have diffé¢rent default options or may generate different code), or is on different hardware (which may have a
different jnstruction set). In this usage, a different computer may be the same hardware with a different
operating system, with different compilers installed; with different software libraries available, with a different
release of the same operating system, or with a\different operating system configuration.

5.1.3 ssues arising from implementation-defined behaviour

In some dituations, a programming language standard may specifically allow compilers to support a range of
behavioufs to a given language feature or combination of features. This may enable a more efficient execution on
a wider range of hardware,.ar enable use of the programming language in a wider variety of circumstances,

To allow yse on a widetrange of hardware, for example, many languages do not specify the amount of storage
reserved for language-defined entities such as variables. The degree to which a diligent programmer may optain
informatipn on-the'amount of storage reserved for entities varies among languages.

The authors\of language standards are encouraged to provide lists of all allowed variations of behaviour (aslmany

already do). Such a summary will benefit applications programmers, those who define applications coding
standards, and those who make code analysis tools.

5.1.4 Issues arising from undefined behaviour

In some situations, a programming language standard may specify that program behaviour is undefined. While
the authors of language standards naturally try to minimize these situations, they may be inevitable when

10 © ISO/IEC 2010 - All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

attempting to define software recovery from errors, or other situations recognized as being incapable of precise
definition.

An example of undefined behaviour, in many languages, is the use of the value of a variable to which there has
not yet been an assignment.

5.2 Issues arising from human cognitive limitations

f
softwalre to manipulate data and produce a desired result. Some programming languages are general pufrpose

The gopH

es, while others are targeted to specific tasks or needs. Even general purpose languages may be treated
with a gpecific user in mind, for example C was created by engineers for programmers implementing system

softwalre, while COBOL was created for business analysts and business programmers.

All hurpans are different. Constructs that may be easily understood by mathematicians-may be confusing to a

’

busineps analyst. Also, similar constructs in different languages (the use of ‘=" in.COBOL for comparison, aind in C
for ass|gnment), and similar constructs within the same language (the use of garégnhtheses for both functipn
parameter lists, macro parameter lists, and for array subscripts) can add tothis confusion. In addition, many
languages provide multiple syntaxes to accomplish the same task, and-coders will choose those syntaxes [that

make the most sense to them, again adding additional confusion in program creation and maintenance.

Humars are also fallible, and can only comprehend a limited ntumber of interactions within a process befpre that
procesp must be subdivided into smaller segments. In addition, stress, whether internal pressures and d¢adlines
or extgrnal influences totally unrelated to the task at hanhd; can interfere with the process of software cregation.

These factors combined with language constructs that'may be confusing can lead to failures due to humgn
fallibility. These failures can include:

o | Cognitive shortcomings, which are-failures of design and implementation. These may be

o faulty reasoning and

0 incomplete solutions.:due to lack of time and effort in comprehending the task.

e | Knowledge shortcomings,"which are failures of training and environment. These can include

0 incompleteand/or incorrect knowledge of appropriate language semantics,

0 incomplete-and/or incorrect knowledge of how the chosen syntax will be executed by a particular
impleémentation, and

0 incomplete and/or incorrect knowledge of the internal and external interactions of the vhrious
software components involved.

e | Judgment shortcomings, which are failures of choice and will, and may include

0 selection of simpler but vulnerable constructs in place of more robust but more time consuming

solutions and
0 selection of terse constructs, which may be less understandable, in place of verbose,
maintainable solutions.

This technical report identifies issues related to the use of programming languages that can increase the
likelihood of errors due to cognitive limitations, and recommends ways that can be used to mitigate or eliminate
these errors. Some of the mechanisms recommended in this technical report include reducing the cognitive
effort necessary in reading existing source code, reducing the amount of knowledge needed by readers of existing

© 1SO/IEC 2010 — All rights reserved 11

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

source code, and reducing the probability that incorrect developer knowledge will result in unpredictable code
execution.

5.3 Issues arising from a lack of predictable execution

If a reasonably competent programmer has a good understanding of the intent of a program after reading source
code as far as a particular line of code, the programmer ought to have a good understanding of the state of the
program after reading the next line of code. However, some features, or, more likely, some combinations of

features, pfprogrammingtangtrages-are-assoctated-withretatively-decreasedratesof-theprogrammer's

maintaining their understanding as they read through a program. It is these features and combinations.of
features that are indicated in this Technical Report, along with ways to increase the programmer's understgnding
as code if read.

Here, thelterm understanding means the programmer's recognition of all effects, including-subtle or unintepded
changes ¢f state, of any language feature or combination of features appearing in the prtogram. This view does
not imply that programmers only read code from beginning to end. It is simply a statement that a line of cqde
changes fhe state of a program, and that a reasonably competent programmer gught to understand the stafte of
the progrem both before and after reading any line of code. It is only to a first\approximation that code is read
and undé€frstood line by line.

5.4 [ssues arising from the lack of portability and interoperability

The reprgsentation of characters, the representation of true/false values, the set of valid addresses, the
propertigs and limitations of any (fixed-point or floating-pdint) numerical quantities, and the representation of
programmer-defined types and classes may vary amaong-hardware, among languages (affecting inter-langudge
software [development), and among compilers of a given language. These variations may be the result of
hardwardg differences, operating system differences, library differences, compiler differences, or different
configuraltions of the same compiler (as maycbe set by environment variables or configuration files). In each of
these cirqumstances, there is an additiondl-burden on the programmer because part of the program's behayiour is
indicated|by a factor that is not a part'ef the source code. That is, the program's behaviour may be indicateld by a
factor that is invisible when reading the source code. Compilation control schemes (IDE projects, make, ang
scripts) fyrther complicate this'situation by abstracting and manipulating the relevant variables (target platform,
compiler pptions, libraries{and so forth).

Many compilers of stahdard-defined languages also support language features that are not specified by the)
language[standard..These non-standard features are called extensions. For portability, the programmer muist be
aware of the language standard, and use only constructs with standard-defined semantics. The motivationto use

extensior{s'may include the desire for increased functionality within a particular environment, or increased

efficiency on particular hardware. There are well-known software engineering techniques for minimizing the ill
effects of extensions; these techniques should be a part of any coding standard where they are needed, and they
should be employed whenever extensions are used. These issues are software engineering issues and are not
further discussed in this Technical Report.

Some language standards define libraries that are available as a part of the language definition. Such libraries are
an intrinsic part of the respective language and are called intrinsic libraries. There are also libraries defined by
other sources; these are called non-intrinsic libraries.

12 © ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

The use of non-intrinsic libraries to broaden the software primitives available in a given development
environment is a useful technique, allowing the use of trusted functionality directly in the program. Libraries may
also allow the program to bind to capabilities provided by an environment. However, these advantages are
potentially offset by any lack of skill on the part of the designer of the library (who may have designed subtle or
undocumented changes of state into the library's behaviour), and implementer of the library (who may not have
implemented the library identically on every platform), and even by the availability of the library on a new
platform. The quality of the documentation of a third-party library is another factor that may decrease the

reliability of software using a library in a particular situation by failing to describe clearly the library's full

behavipur. If a library is missing on a new platform, its functionality must be recreated to port any softwhre
dependling upon the missing library. The re-creation may be burdensome if the reason the library.is missjng is
becaude the underlying capability for a particular environment is missing. The pedigree of thedibrary mupt also be
assurefl, the library must come from a trusted source without adulteration in transmission-0r storage.

Using 4 non-intrinsic library usually requires that options be set during compilation and linking phases, which
constitjute a software behaviour specification beyond the source code. Again, these‘issues are software
enginefring issues and are not further discussed in this Technical Report.

5.5 | Issues arising from inadequate language intrinsic-support

Many languages are created to facilitate programming within an application domain. Some languages arg
specifigally designed for programming of business applications; numerical computation or systems programming.
Problems can arise when, for example, a language being used‘to implement a real-time, multi-threaded gystem
lacks kpy features that are needed such as a way of enfarcing mutual exclusion. Such features can be proyided by
the pragramming environment in the form of libraries;/but the definition of such libraries may be proprigtary and
inclinefl to change in later releases. A vendor may,even decide to withdraw support entirely for such a lirary.
Also, stich a library may not be verified and validated to the same standard as the compiler and the appli¢ation
being developed.

Some potential problems may be preventable through the use of stronger types, or the use of controls sych as
array dounds checking or integerichecking to avoid overflows. These stronger restraints on a language have a

cost bqth in performance andiin the flexibility to perform certain operations. Language designers must strike a
balancp between restraints in the language, performance and flexibility causing some languages to lean heavily
toward one or more extremes in pursuit of some language attributes. The intrinsic support provided by 4
language can help.considerably in avoiding vulnerabilities, but such support can cause the utility of programming
within ja particulanapplication domain to diminish.

5.6 | dssues arising from language features prone to erroneous use

Certain language constructs are relatively simple and straightforward to use. Other ones are complex to use or
easily misused in a legal, but unintended way. Programmers may use floating point variables and pointers
without fully understanding the nuances of the data representation. Rarely needed constructs or constructs that
can be substituted for a series of simpler constructs can be used without a complete understanding of the full
effects of the constructs.

Syntactic language features that are not intolerant of common typo errors can produce some problems that are
notoriously difficult to find. One common example of this is that C permits an unintentional assignment to be

ISO/IEC 2010 — All rights reserved 13

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

performed in a Boolean expression by the accidental use of a single

“=="test

“_n

for equality. It then allows the resulting value to be treated as a Boolean.

6 Programming Language Vulnerabilities

6.1

General

(assignment) instead of the intended

The stand
Report w

ard for a programming language provides definitions for that language’s constructs. This Technica
Il in general use the terminology that is most natural to the description for each individual vdlnerd

relying ugon the individual standards for terminology details. In general, the reader should bejaware that

“method
and “refe
behaviou

6.2
6.2.1

Every pro
The prob
such as, H
correct,
more sev|

Misundet

, “function”, and “procedure” could denote similar constructs in different languages; as can “poin
rence”. Situations described as “undefined behaviour” in some languages arecknown as “unboung
I in others.

Dbscure Language Features [BRS]

Description of application vulnerability

sramming language has features that are obscure, difficult'to understand or difficult to use correc
em is compounded if a software design must be reviewed by people who may not be language ex
ardware engineers, human-factors engineers, orsafety officers. Even if the design and code are in
haintainers of the software may not fully understand the intent. The consequences of the problem
bre if the software is to be used in trusted applications, such as safety or mission critical ones.

stood language features or misunderstood code sequences can lead to application vulnerabilities

developnpent or in maintenance.

6.2.2

JSF AV RY
MISRA C
MISRA C+
CERT C gy
ISO/IEC T

Cross reference

les: 84, 86, 88, and 97

P004: 3.2,10.2,13!1,)17.5, 20.6-20.12, and 12.10
+2008: 0-2-1,2-3-1, and 12-1-1

idelines: FIO03-C, MSC05-C, MSC30-C, and MSC31-C.
R 15942:2000: 5.4.2,5.6.2 and 5.9.3

6.2.3

Méchanism of failure

bility,

”

ter
ed

tly.

berts,

itially
are

The use of obscure language features can lead to an application vulnerability in several ways:

e The original programmer may misunderstand the correct usage of the feature and could utilize it

incorrectly in the design or code it incorrectly.

e Reviewers of the design and code may misunderstand the intent or the usage and overlook problems.

e Maintainers of the code cannot fully understand the intent or the usage and could introduce problems

d

14

uring maintenance.

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

6.2.4 Applicable language characteristics

This vulnerability description is intended to be applicable to any language.

6.2.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Individual programmers should avoid the use of language features that are obscure or difficult to use,

especially in combination with other difficult language features. Organizations should adopt codipg
standards that discourage use of such features or show how to use them correctly.
¢ | Organizations developing software with critically important requirements should adopta mechamnism to
monitor which language features are correlated with failures during the development'\process and during
deployment.
e | Organizations should adopt or develop stereotypical idioms for the use of difficult language featyres,
codify them in organizational standards, and enforce them via review processes.
e | Avoid the use of complicated features of a language.

¢ | Avoid the use of rarely used constructs that could be difficult for entry-level maintenance personhnel to
understand.

e | Static analysis can be used to find incorrect usage of some language features.

It should be noted that consistency in coding is desirable for.each of review and maintenance. Therefore,the
desirability of the particular alternatives chosen for inclusion in a coding standard does not need to be empirically
prover.

6.2.6 | Implications for standardization
In futufe standardization activities, the following items should be considered:

e | Language designers should consider removing or deprecating obscure, difficult to understand, or{difficult
to use features.
e | Language designers should provide language directives that optionally disable obscure language features.

6.3 | Unspecified Behaviour [BQF]

6.3.1 | Description of application vulnerability

The externdl behaviour of a program whose source code contains one or more instances of constructs having

unspedifigd‘behaviour may not be fully predictable when the source code is (re)compiled or (re)linked.

6.3.2 Cross reference

JSF AV Rules: 17-25

MISRA C 2004:1.3,1.5,3.13.3,3.4,17.3,1.2,5.1, 18.2,19.2, and 19.14

MISRA C++ 2008: 5-0-1, 5-2-6, 7-2-1, and 16-3-1

CERT C guidelines: MSC15-C

See: Undefined Behaviour [EWF] and Implementation-defined Behaviour [FAB].

ISO/IEC 2010 - All rights reserved 15

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IECT

R 24772:2010(E)

6.3.3 Mechanism of failure

Language
construct

specifications do not always uniquely define the behaviour of a construct. When an instance of a
that is not uniquely defined is encountered (this might be at any of compile, link, or run time)

implementations are permitted to choose from the set of behaviours allowed by the language specification. The

term 'unspecified behaviour' is sometimes applied to such behaviours, (language specific guidelines need to

analyze and document the terms used by their respective language).

A develof
behaviou
the 'expe

Many lan
these cor
appearin
behaviou

The appe
that in so
translato

The impo
machine
program)
same ext
a change

I of a program containing such a usage is dependent on the translator used to build it always seleg
rted' behaviour.

buage constructs may have unspecified behaviour and unconditionally recommending against any
structs may be impractical. For instance, in many languages the order of evaluation’of the operan
b on the left- and right-hand side of an assignment is unspecified, but in most-cases the set of poss
s always produce the same result.

hrance of unspecified behaviour in a language specification is a recogutition by the language design
Ime cases flexibility is needed by software developers and providésa worthwhile benefit for langus
s; this usage is not a defect in the language.

rtant characteristic is not the internal behaviour exhibitéd)by a construct (such as the sequence of|
fode generated by a translator) but its external behaviour (that is, the one visible to a user of a

If the set of possible unspecified behaviours permitted for a specific use of a construct all produc
brnal effect when the program containing them<ds executed, then rebuilding the program cannot r
of behaviour for that specific usage of the construct.

ge

b the
bsult in

For instance, while the following assignment statement contains unspecified behaviour in many languages (that

is, itis po
A =

in most ¢
containin

6.3.4
This vulng

o L

ksible to evaluate either the A or Buoperand first, followed by the other operand):
B;

hses the order in which\A and B are evaluated does not affect the external behaviour of a program
e this statement,

Applicabledanguage characteristics
brability-is intended to be applicable to languages with the following characteristics:

hnglages whose specification allows a finite set of more than one behaviour for how a translator

h
p

andles some construct, where two or more of the behaviours can result in differences in external
rogram behaviour.

6.3.5 Avoiding the vulnerability or mitigating its effects

Software

developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Use language constructs that have specified behaviour.

16

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

6.3.6

ISO/IEC TR 24772:2010(E)

Ensure that a specific use of a construct having unspecified behaviour produces a result that is the same
for all of the possible behaviours permitted by the language specification.

When developing coding guidelines for a specific language all constructs that have unspecified behaviour
should be documented and for each construct the situations where the set of possible behaviours can
vary should be enumerated.

Implications for standardization

In futu

6.4
6.4.1

The ex
by the

6.4.2

JSF AV
MISRA|
MISRA
CERT C
See: U

6.4.3

Langug
seman
of dete

or runfime system is at liberty to do anything it pleases (which may include issuing a diagnostic).

The be]
undefi
before

re standardization activities, the rollowing items should be considered:

Languages should minimize the amount of unspecified behaviours, minimize the numberef.possible
behaviours for any given "unspecified" choice, and document what might be the diffefence in external
effect associated with different choices.

Undefined Behaviour [EWF]

Description of application vulnerability

fernal behaviour of a program containing an instance of a constructhaving undefined behaviour, gs defined
language specification, is not predictable.

Cross reference

Rules: 17-25

C2004:1.3,1.5,3.1,3.3,3.4,17.3,1.2,5.1, 18.2, 19.2, and 19.14
C++2008: 2-13-1, 5-2-2, 16-2-4, and 16-2-5

guidelines: MSC15-C

hspecified Behaviour [BQF] and Implementation-defined Behaviour [FAB].

Mechanism of failure

ge specifications may categerize the behaviour of a language construct as undefined rather than ds a
Fic violation (that is, an'erroneous use of the language) because of the potentially high implementation cost
cting and diagnosing.all occurrences of it. In this case no specific behaviour is required and the translator

haviour df 3 program built from successfully translated source code containing a construct having
hed behaviour is not predictable. For example, in some languages the value of a variable is undefiped
itis’initialized.

6.4.4

This vu

Applicable language characteristics
Inerability is intended to be applicable to languages with the following characteristics:

Languages that do not fully define the extent to which the use of a particular construct is a violation of
the language specification.

Languages that do not fully define the behaviour of constructs during compile, link and program
execution.

© 1SO/IEC 2010 — All rights reserved 17

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

6.4.5

Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Ensuring that undefined language constructs are not used.

e Ensuring that a use of a construct having undefined behaviour does not operate within the domain in

which the behaviour is undefined. When it is not possible to completely verify the domain of operation

during translation a runtime check may need to be performed.

= un

6.4.6

In future

6.5

6.5.1

Some corjstructs in programming languages.are not fully defined (see Unspecified Behaviour [BQF]) and thy
leave compiler implementations to decide how the construct will operate. The behaviour of a program whq
source cd
when the source code is recompiled or relinked.

6.5.2

JSF AV Ryles: 17-25

MISRA C

MISRA C++ 2008: 5-2-9, 5-3-3, 7-3-2, and 9-5-1
CERT C gyidelines: MSC15-C

ikely to have some critical impact on the external behaviour of a program (the criticality may vary

o

ppinters has well defined behaviour).

L
pfactical.
L
L

npay produce undefined behaviour.

hen developing coding guidelines for a specitic language all constructs that have undefined behay
hould be documented. The items on this list might be classified by the extent to which the bhehavi

etween different implementations, for example, whether conversion between objectdandAfunction

mplications for standardization
tandardization activities, the following items should be considered:

hnguage designers should minimize the amount of undefined beh@viour to the extent possible and

hnguage designers should enumerate all the cases of undefined behaviour.
hnguage designers should provide mechanisms that penmit the disabling or diagnosing of construc

[mplementation-defined Behaviour~ [FAB]

Description of application vulnerability

Cross referenceé

P004: 1.3,14.5,3.13.3,3.4,17.3,1.2,5.1, 18.2,19.2, and 19.14

iour
bur is

Is that

[%)

se

de contains one or more instances of constructs having implementation-defined behaviour, can change

ISO/IEC TR 15942:2000: 5.9
Ada Quaility and Style Guide: 7.1.5and 7.1.6
See: Unspecified Behaviour [BQF] and Undefined Behaviour [EWF].

6.5.3

Mechanism of failure

Language specifications do not always uniquely define the behaviour of a construct. When an instance of a

construct that is not uniquely defined is encountered (this might be at any of translation, link-time, or program

18

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

execution) implementations are permitted to choose from a set of behaviours. The only difference from

unspecified behaviour is that implementations are required to document how they behave.

A developer may use a construct in a way that depends on a particular implementation-defined behaviour

occurring. The behaviour of a program containing such a usage is dependent on the translator used to build it

always

selecting the 'expected' behaviour.

Some implementations provide a mechanism for changing an implementation's implementation-defined

behavi
for add
in the

prior tp that explicit change of behaviour.

Many |
againsf
of sign
numbe

The ap|
design
this us

6.5.4

This vy

6.5.5

Softwa

purtforexampte; use of pragmers T Sourte tode)Use of suchra thange mechanismrereates the
itional human error in that a developer may be unaware that a change of behaviour was requeste
ource code and may write code that depends on the implementation-defined behaviour that-occt

Qnguage constructs may have implementation-defined behaviour and unconditionally recommend
any use of these constructs may be completely impractical. For instance, in many languages the n
ficant characters in an identifier is implementation-defined. Developers need to choose a minimu
r of characters and require that only translators supporting at least thatthumber, N, of characters

pearance of implementation-defined behaviour in a language spécification is recognition by the la
brs that in some cases implementation flexibility provides a warthwhile benefit for language transl
hge is not a defect in the language.

Applicable language characteristics
Inerability is intended to be applicable to languages with the following characteristics:

Languages whose specification allows sefre variation in how a translator handles some construct
reliance on one form of this variation\can result in differences in external program behaviour.
Language implementations may‘n'ot be required to provide a mechanism for controlling implemse
defined behaviour.

Avoiding the vulnerability or mitigating its effects
re developers can-.avaid the vulnerability or mitigate its ill effects in the following ways:

Documentthe'set of implementation-defined features an application depends upon, so that upo
change ©fitranslator, development tools, or target configuration it can be ensured that those
dependencies are still met.

EnSure that a specific use of a construct having implementation-defined behaviour produces an ¢

potential
d earlier
rred

ing
umber
m

be used.

hguage
ators;

, where

ntation-

xternal

behaviour that Is the same for all of the possible behaviours permitted by the language specifica

on.

Only use a language implementation whose implementation-defined behaviours are within a known

subset of implementation-defined behaviours. The known subset should be chosen so that the 's
external behaviour' condition described above is met.

Create highly visible documentation (perhaps at the start of a source file) that the default
implementation-defined behaviour is changed within the current file.

ISO/IEC 2010 — All rights reserved

ame

19

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

e When developing coding guidelines for a specific language all constructs that have implementation-
defined behaviour shall be documented and for each construct, the situations where the set of possible
behaviours can vary shall be enumerated.

e When applying this guideline on a project the functionality provided by and for changing its
implementation-defined behaviour shall be documented.

e Verify code behaviour using at least two different compilers with two different technologies.

6.5.6 Implications for standardization

In future ptandardization activities, the following items should be considered:

prtability guidelines for a specific language should provide a list of common implementation-defingd

P
behaviours.
Language specifiers should enumerate all the cases of implementation-defined behaviour.
L

hnguage designers should provide language directives that optionally disablelobscure language fedtures.
6.6 Deprecated Language Features [MEM]
6.6.1 Description of application vulnerability

All code ghould conform to the current standard for the respective {anguage. In reality though, a language
standard|may change during the creation of a software system oer'suitable compilers and development
environmnents may not be available for the new standard forseme period of time after the standard is publi{shed.
To smooth the process of evolution, features that are no longer needed or which serve as the root cause of|or
contributjng factor for safety or security problems are ¢ften deprecated to temporarily allow their continued use
but to indicate that those features may be removed.in the future. The deprecation of a feature is a strong
indication that it should not be used. Other features, although not formally deprecated, are rarely used and there
exist othér more common ways of expressing the same function. Use of these rarely used features can lead to
problemq when others are assigned the task of debugging or modifying the code containing those features.

6.6.2 Cross reference

JSF AV Ryles: 8 and 11

MISRA C p004: 1.1, 4.2, and-20.10

MISRA C4+ 2008: 1-0<1,2-3-1, 2-5-1, 2-7-1, 5-2-4, and 18-0-2
Ada Quaility and Style Guide: 7.1.1

6.6.3 Mechanism of failure

Most languages evolve over time. Sometimes new features are added making other features extraneous.
Languages may have features that are frequently the basis for security or safety problems. The deprecation of
these features indicates that there is a better way of accomplishing the desired functionality. However, there is
always a time lag between the acknowledgement that a particular feature is the source of safety or security
problems, the decision to remove or replace the feature and the generation of warnings or error messages by
compilers that the feature shouldn’t be used. Given that software systems can take many years to develop, it is
possible and even likely that a language standard will change causing some of the features used to be suddenly

20 © ISO/IEC 2010 - All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 2477

2:2010(E)

deprecated. Modifying the software can be costly and time consuming to remove the deprecated features.

However, if the schedule and resources permit, this would be prudent as future vulnerabilities may result from

leaving the deprecated features in the code. Ultimately the deprecated features will likely need to be removed

when the features are removed.

6.6.4

Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

6.6.5

Softwa

6.6.6

In futu

6.7

6.7.1

All languages that have standards, though some only have defacto standards.

Avoiding the vulnerability or mitigating its effects
re developers can avoid the vulnerability or mitigate its ill effects in the followjng ways:

Adhere to the latest published standard for which a suitable complier and development environn
available.

Avoid the use of deprecated features of a language.

Stay abreast of language discussions in language user groupsandstandards groups on the Intern
Discussions and meeting notes will give an indication of problem prone features that should not
or should be used with caution.

Implications for standardization
re standardization activities, the following itéfs should be considered:

Obscure language features for which:there are commonly used alternatives should be considereg
removal from the language standard.

Obscure language features that have routinely been found to be the root cause of safety or secu
vulnerabilities, or that are-rgutinely disallowed in software guidance documents should be consid
removal from the language’standard.

Language designersshould provide language mechanisms that optionally disable deprecated lang
features.

Pre-processor Directives [NMP]

Description of application vulnerability

All languages that evolve over time and as such could potentially have deprecated features.at some point.

hent is

Pt.
be used

for

ity
ered for

ruage

Pre-pr

1 I} lo ok] I} Il I} £ 1 H I}
CESS5UI IC[JIdLCIIICIIt) MMapgpciT DETOUTT diTy SUUTLT LOUUT bylltd)\ CITECLK, tlltl CIure tllCl CISTIU typﬂ LI

this is especially important in function-like macro parameters.

cking —

If great care is not taken in the writing of macros, the expanded macro can have an unexpected meaning. In

many cases if explicit delimiters are not added around the macro text and around all macro arguments within the

macro

text, unexpected expansion is the result.

ISO/IEC 2010 — All rights reserved

21

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

Source code that relies heavily on complicated pre-processor directives may result in obscure and hard to

maintain code since the syntax they expect may be different from the expressions programmers regularly expect

in a given programming language.

6.7.2

Cross reference

Holzmann-8
JSF SV Rules: 26, 27, 28, 29, 30, 31, and 32
MISRA C 2004: 19.6, 19.7,19.8, and 19.9

MISRA C++ 2008: 16-0-3, 16-0-4, and 16-0-5
CERT C gyidelines: PREO1-C, PREO2-C, PRE10-C, and PRE31-C

6.7.3

Readability and maintainability may be greatly decreased if pre-processing directives are used instead of lar
features.

While staltic analysis can identify many problems early; heavy use of the pre-processor can limit the effectiv
of many {tatic analysis tools, which typically work on the pre-processed sourceé\code.

In many dases where complicated macros are used, the program does not do what is intended. For exampl

6.7.4

This vulngrability description is intended to be applicable to languages with the following characteristics:

22

Mechanism of failure

define a macro as follows,
#define CD(X, V) X+ y -1) /vy

=

hose purpose is to divide. Then suppose it is used as follows

a =CD (b & c, sizeof (int))s

=

hich expands into

a=(b & c + sizeof (int) - 1) / sizeof (int);
which most times will not de.what is intended. Defining the macro as
#define CD(Xs~VY) () + () - 1) 7 ()

ill provide the desired result.

=

Applicable language characteristics

guage

eness

1%

Languages that have a lexical-level pre-processor.

Languages that allow unintended groupings of arithmetic statements.
Languages that allow cascading macros.

Languages that allow duplication of side effects.

Languages that allow macros that reference themselves.

Languages that allow nested macro calls.

Languages that allow complicated macros.

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

6.7.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Where it is possible to achieve the desired functionality without the use of pre-processor directives, this
should be done in preference to the use of pre-processor directives.

6.7.6 Implications for standardization

In futufe standardization activities, the following items should be considered:

e | Standards should reduce or eliminate dependence on lexical-level pre-processors for essential
functionality (such as conditional compilation).

e | Standards should consider providing capabilities to inline functions and proceduré\calls, to reducg the
need for pre-processor macros.

6.8 | Choice of Clear Names [NAI]
6.8.1 | Description of application vulnerability

Humarns sometimes choose similar or identical names for objects, types, aggregates of types, subprogranys and
modulgs. They tend to use characteristics that are specific to the'dative language of the software develor;[er to aid
in this pffort, such as use of mixed-casing, underscores and p€ériods, or use of plural and singular forms td support
the separation of items with similar names. Similarly, development conventions sometimes use casing fof
differeptiation (for example, all uppercase for constants).

Humarn cognitive problems occur when different(but similar) objects, subprograms, types, or constants differ in
name 4o little that human reviewers are unlikely'to distinguish between them, or when the system maps|such
entitie$ to a single entity.

Conventions such as the use of capitalization, and singular/plural distinctions may work in small and medfium
projects, but there are a number of’significant issues to be considered:

e | Large projects oftenyhave mixed languages and such conventions are often language-specific.
¢ | Many implementations support identifiers that contain international character sets and some larjguage
character sets\have different notions of casing and plurality.
o | Differentword-forms tend to be language and dialect specific, such as a pidgin, and may be meaningless
to humans that speak other dialects.

An imgortant general issue is the choice of names that differ from each other negligibly (in human terms), for
example by differing by only underscores, (none, "_" "

"), plurals ("s"), visually similar characters (such as "I" and
"1","0" and "0"), or underscores/dashes ("-"," "). [There is also an issue where identifiers appear distinct to a
human but identical to the computer, such as FOO, Foo, and foo in some computer languages.] Character sets

extended with diacritical marks and non-Latin characters may offer additional problems. Some languages or their
implementations may pay attention to only the first n characters of an identifier.

The problems described above are different from overloading or overriding where the same name is used
intentionally (and documented) to access closely linked sets of subprograms. This is also different than using

© 1SO/IEC 2010 — All rights reserved 23

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

reserved names which can lead to a conflict with the reserved use and the use of which may or may not be
detected at compile time.

Name confusion can lead to the application executing different code or accessing different objects than the writer
intended, or than the reviewers understood. This can lead to outright errors, or leave in place code that may
execute some time in the future with unacceptable consequences.

Although most such mistakes are unintentional, it is plausible that such usages can be intentional, if masking

surreptitipusbetaviourisagoat:
6.8.2 (rossreference

JSF AV Ryles: 48-56

MISRA C p004: 1.4

CERT C gyidelines: DCL0O2-C

Ada Quaility and Style Guide: 3.2

6.8.3 Mechanism of Failure
Calls to tme wrong subprogram or references to the wrong data element (that was missed by human review]) can

result in ynintended behaviour. Language processors will not make a mistake in name translation, but humian
cognition|limitations may cause humans to misunderstand, and theréfore may be easily missed in human rgviews.

6.8.4 Applicable language characteristics
This vulngrability description is intended to be applicableto languages with the following characteristics:

hnguages with relatively flat name spaces.will be more susceptible. Systems with modules, classesq,
pckages can use qualification to disambiguate names that originate from different parents.
hnguages that provide preconditions) postconditions, invariances and assertions or redundant codjng of

o nothing if different subpfograms are called.

L
P
L
stibprogram signatures help to ensure that the subprograms in the module will behave as expected} but
d
Lhnguages that treat letter case as significant. Some languages do not differentiate between names$ with
d

ffering case, while@thers do.
6.8.5 Avoiding the vulnerability or mitigating its effects

Software|developers’can avoid the vulnerability or mitigate its ill effects in the following ways:

plémenters can create coding standards that provide meaningful guidance on name selection angl use.

Good language specitic guidelines could eliminate most problems.

e Use static analysis tools to show the target of calls and accesses and to produce alphabetical lists of
names. Human review can then often spot the names that are sorted at an unexpected location or which
look almost identical to an adjacent name in the list.

e Use static tools (often the compiler) to detect declarations that are unused.

e Use languages with a requirement to declare names before use or use available tool or compiler options
to enforce such a requirement.

24 © ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

6.8.6 Implications for standardization
In future standardization activities, the following items should be considered:

e languages that do not require declarations of names should consider providing an option that does
impose that requirement.

6.9 Choice of Filenames and other External Identifiers [AJN]

6.9.1 | Description of application vulnerability

Interfaking with the directory structure or other external identifiers on a system on which software‘executes is

very cqmmon. Differences in the conventions used by operating systems can result in significant changes in
behavipur when the same program is executed under different operating systems. For jnstance, the direftory
structyre, permissible characters, case sensitivity, and so forth can vary among operating’systems and even
among variations of the same operating system. For example, Microsoft XP prohibits “/?:&*”<>|#%"; but UNIX,
Linux, nd OS X operating systems allow any character except for the reserved character /' to be used inf a

filenane.

Some ¢perating systems are case sensitive while others are not. On non-case sensitive operating systemg

~

dependling on the software being used, the same filename could be displayed, as “filename”, “Filename”|or
“FILENAME” and all would refer to the same file.

Some ¢perating systems, particularly older ones, only rely*on the significance of the first n characters of the file
name.|n can be unexpectedly small, such as the first 8characters in the case of Win16 architectures whith would
cause {filenamel”, “filename2” and “filename3” to'all map to the same file.

Variatipns in the filename, named resource or'external identifier being referenced can be the basis for various
kinds df problems. Such mistakes or amhiguity can be unintentional, or intentional, and in either case they can be
potentjally exploited, if surreptitious behaviour is a goal.

6.9.2 | Cross reference

JSF AV|Rules: 46, 51, 53,54, 55, and 56
MISRA|C 2004: 1.4 and 5:1
CERT (guidelinesMSC09-C and MSC10-C

6.9.3 | Mechanism of Failure

The wrang named resource such as a file_may be used within a program in a form that provides accesstb a

resource that was not intended to be accessed. Attackers could exploit this situation to intentionally misdirect
access of a named resource to another named resource.

6.9.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

ISO/IEC 2010 — All rights reserved 25

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IECT

o A

R 24772:2010(E)

ny language providing for use of an AP/ (Application Programming Interface) for external access of

resources with varied naming conventions. In practice, this means all languages.

e A particular language interface to a system should be consistent in its processing of filenames or external

identifiers. Consistency is only the first consideration. Even though it is consistent, it may consistently do

something that is unexpected by the developer of the software interfacing with the system.

6.9.5 Avoiding the vulnerability or mitigating its effects

Software

W
e
o A
d
E

M

= On

6.9.6

In future

[]
wn —

6.10
6.10.1

A variablg
neither re
design ha

Unused v

developers can avoid the vulnerability or mitigate Its Il ettects in the tollowing ways:

here possible, use an API that provides a known common set of conventions for naming and.acce
kternal resources, such as POSIX, ISO/IEC 9945:2003 (IEEE Std 1003.1-2001).

nalyze the range of intended target systems, develop a suitable API for dealing with.them, and
pcument the analysis.

hsure that programs adapt their behaviour to the platform on which they are executing, so that or
tended resources are accessed. The means that information on such characteristics as the directd
pparator string and methods of accessing parent directories need to be parameterized and not exi
ked strings within a program.

void creating resource names that are longer than the guaranteed unique length of all potential t3
atforms.

void creating resources, which are differentiated only by the ¢ase in their names.

mplications for standardization
tandardization activities, the following items shiould be considered:
hnguage APIs for interfacing with externalidentifiers should be compliant with ISO/IEC 9945:2003

td 1003.1-2001).

Unused Variable [XYR]

Description of application vulnerability

's value is assigned/but never used, making it a dead store. As a variant, a variable is declared but
ad nor writtén-to in the program, making it an unused variable. This type of error suggests that th
s been incompletely or inaccurately implemented.

ariables by themselves are innocuous, but can be combined with other vulnerabilities such as inde

5Sing

ly the
ry
bt as

rget

IEEE

bounds e

Frors and buffer overflows and may mask errors or provide hidden channels.

6.10.2 Cross reference

CWE:
563.

Unused Variable

MISRA C++ 2008: 0-1-4 and 0-1-6
CERT C guidelines: MSC13-C

26

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

6.10.3 Mechanism of failure

A variable is declared, but never used. It is likely that the variable is simply vestigial, but it is also possible that the
unused variable points out a bug. This is likely to suggest that the design has been incompletely or inaccurately
implemented.

A variable is assigned a value but this value is never used thereafter. The assignment is then generally referred to
as a dead store. Note that this may be acceptable if the variable is a volatile variable, for which the assignment of

avalu riggers some externdl event.

A dead store is indicative of careless programming or of a design or coding error; either the use of\the value was
forgotfen (almost certainly an error) or the assignment was performed even though it was noteeded (unless
there if a justification for it).

An unysed variable or a dead store is very unlikely to be the cause of a vulnerability. However, since compilers
diagnoke unused variables routinely and dead stores occasionally, their presence._is often an indication tHat
compiler warnings are either suppressed or are being ignored by programmets, Fhis observation does n¢t hold

for autbmatically generated code, where it is commonplace to find unused-variables and dead stores, intfoduced
to keep the generation process simple and uniform.

6.10.4 Applicable language characteristics

This vdylnerability description is intended to be applicable to languages with the following characteristics:

e | Dead stores are possible in any programming language that provides assignment. (Pure functions
languages do not have this issue.)
e | Unused variables (in the technical sense.above) are possible only in languages that provide variable
declarations.

6.10.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the-vulnerability or mitigate its ill effects in the following ways:

e | Enable detection pf\unused variables and dead stores in the compiler. The default setting may bd to
suppress these warnings.

6.10.4 Implications for standardization

In futufe standardization activities, the following items should be considered:

e —Languages shoutdtonsider requiring mandatory diagnostics for unused variablies.
6.11 Identifier Name Reuse [YOW]

6.11.1 Description of application vulnerability

When distinct entities are defined in nested scopes using the same name it is possible that program logic will
operate on an entity other than the one intended.

© 1SO/IEC 2010 — All rights reserved 27

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

When it is not clear which identifier is used, the program could behave in ways that were not predicted by reading
the source code. This can be found by testing, but circumstances can arise (such as the values of the same-named

objects being mostly the same) where harmful consequences occur. This weakness can also lead to vulnerabilities

such as hidden channels where humans believe that important objects are being rewritten or overwritten when in

fact othe

r objects are being manipulated.

For example, the innermost definition is deleted from the source, the program will continue to compile without a

diagnosti

6.11.2

¢ being issued (but execution can produce unexpected results).

Cross reference

JSF AV Ryles: 120 and 135-9

MISRA C

P004:5.2,5.5,5.6,5.7, 20.1, 20.2

MISRA C++ 2008: 2-10-2, 2-10-3, 2-10-4, 2-10-5, 2-10-6, 17-0-1, 17-0-2, and 17-0-3
CERT C gyidelines: DCLO1-C and DCL32-C

Ada Quai

6.11.3

Many lan

ity and Style Guide: 5.6.1 and 5.7.1

Mechanism of failure

puages support the concept of scope. One of the ideas behindthe concept of scope is to provide a

mechanigm for the independent definition of identifiers that may share-the same name.

For instance, in the following code fragment:

int

some_var;

(ot

int t var;
int some_var; /* definition in nested scope */

t var=3;
some_var=2;

}

an identifier called some_valr_has been defined in different scopes.

If either t
source is
definition
to be issy
but the re

he definition of Some_var or t_var that occurs in the nested scope is deleted (for example, wh
modified) itistnecessary to delete all other references to the identifier’s scope. If a developer dele
of €_varput fails to delete the statement that references it, then most languages require a diag
ed (suchas reference to undefined variable). However, if the nested definition of some_var is de
fetence to it in the nested scope is not deleted, then no diagnostic will be issued (because the ref

en the
tes the
nostic
bleted
brence

resolves

O the deTinition In the outer scope).

An example of how interpretations of a programming language can differ, in the following code fragment:

int

{

j = 100;

for (int j = 0; j < 10; j++) ;
J

std::cout <<

}

28

<< std::endl; // What is the value of j

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

According to ISO 14882:2003 (C++) standard the value printed for j should be 100, but in some implementations
that do not conform to the current version of the standard it will be 10, as the loop counter j remains in-scope

after th

e end of the loop statement.

In some cases non-unique identifiers in the same scope can also be introduced through the use of identifiers
whose common substring exceeds the length of characters the implementation considers to be distinct. For

example, in the following code fragment:

£] 2010070 -
LI B

e
e

the exflernal identifiers are not unique on implementations where only the first 31 characters are significa
situation only occurs in languages that allow multiple declarations of the same identifier (other language$

a diagr

functig

Definit]
definit
names

6.11.4

This vy

taora—int bal cvauhbal dao nlaoalain—tabl
CCTIT mITC ar_SyrnmmooT_4acT MT_TOUROP_CaoTC_arITouoygs,

ala 43
U LAY} L= AV
tern int global _symbol definition_lookup table b[100];

nt. This
require

ostic message to be issued). (See, Choice of Filenames and other External Identifiers [AIJN].)
A relatpd problem exists in languages that allow overloading or overriding of keywords or standard librarly

n identifiers. Such overloading can lead to confusion about which entity is intended to be referented.
ons for new identifiers should not use a name that is already visible within the scope containing the new
on. Alternately, utilize language-specific facilities that check for'and prevent inadvertent overload|ng of
should be used.

Applicable language characteristics
Inerability is intended to be applicable to languages’with the following characteristics:

Languages that allow the same name to be used for identifiers defined in nested scopes.

Languages where unique names can hétransformed into non-unique names as part of the normal tool

6.11.5

Softwa

re developers can avoid the vulnerability or mitigate its ill effects in the following ways:

chain.

Avoiding the vulnerability,or mitigating its effects

Ensure that a definition of an entity does not occur in a scope where a different entity with the same
name is accessible and can be used in the same context. A language-specific project coding convéntion

can be uséd-to ensure that such errors are detectable with static analysis.

Ensurethat a definition of an entity does not occur in a scope where a different entity with the same

namelis accessible and has a type that permits it to occur in at least one context where the first &

occur.

ntity can

Use language features, if any, which explicitly mark definitions of entities that are intended to hide other

definitions.

Develop or use tools that identify name collisions or reuse when truncated versions of names cause

conflicts.

Ensure that all identifiers differ within the number of characters considered to be significant by the

implementations that are likely to be used, and document all assumptions.

ISO/IEC 2010 — All rights reserved

29

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

6.11.6

Implications for standardization

In future standardization activities, the following items should be considered:

6.12

6.12.1

Languages should require mandatory diagnostics for variables with the same name in nested scopes.

Languages should require mandatory diagnostics for variable names that exceed the length that the

implementation considers unique.

Languages should consider requiring mandatory diagnostics for overloading or overriding of keywords or

standard library function identitiers.
Namespace Issues [BJL]

Description of Application Vulnerability

If a langupge provides separate, non-hierarchical namespaces and a means to make names declared in thes

name spdces directly visible to an application, the potential of unintentional and passible disastrous changei

applicatign behavior can arise, when names are added to a namespace during maintenance.

Namespaes include constructs like packages, modules, libraries, classes or-any other means of grouping

declaratigns for import into other program units.

6.12.2 (ross references
[Nonfe]
6.12.3 [Mechanism of Failure

The failune is best illustrated by an example. Namgéspace N1 provides the name A but not B; Namespace N2

provides the name B but not A. The application wishes to use A from N1 and B from N2. At this point, therg

no obvioys issues. The application chooses (or needs to) import the namespaces to obtain names for direct

for an example.

Use N1, N2; — presumed to make all names in N1 and N2 directly visible

. X|:= A + B;

The semdntics of the/above example are intuitive and unambiguous.

Later, dufing maintenance, the name B is added to N1. The change to the namespace usually implies a

recompilation of dependent units. At this point, two declarations of B are applicable for the use of B in the

example.

4%

are
usage,

hbove

Some languages try to disambiguate the above situation by stating preference rules in case of such ambiguity

among names provided by different name spaces. If, in the above example, N1 is preferred over N2, the meaning

of the use of B changes silently, presuming that no typing error arises. Consequently the semantics of the

program change silently and assuredly unintentionally, since the implementer of N1 can not assume that all users

of N1 would prefer to take any declaration of B from N1 rather than its previous namespace.

30

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

It does not matter what the preference rules actually is, as long as the namespaces are mutable. The above
example is easily extended by adding A to N2 to show a symmetric error situation for a different precedence rule.

If a language supports overloading of subprograms, the notion of “same name” used in the above example is
extended to mean not only the same name, but also the same signature of the subprogram. For vulnerabilities
associated with overloading and overriding, see Identifier Name Reuse [YOW]. In the context of namespaces,
however, adding signature matching to the name binding process, merely extends the described problem from
simple names to full signatures, but does not alter the mechanism or quality of the described vulnerability. In
particylar, overloading does not introduce more ambiguity for binding to declarations in different name 4paces.

This vdylnerability not only creates unintentional errors. It also can be exploited maliciously, if the source pf the
applicdtion and of the namespaces is known to the aggressor and one of the namespaces is mutable by the
attacher.

6.12.4 Applicable Language Characteristics
The vulnerability is applicable to languages with the following characteristics:

e | Languages that support non-hierarchical separate name-spaces, have means to import all names|of a
namespace “wholesale” for direct use, and have preference rulésto choose among multiple imported
direct homographs. All three conditions need to be satisfied for the vulnerability to arise.

6.12.5 Avoiding the Vulnerability or Mitigating its Effects
Software developers can avoid the vulnerability or mitigate'its ill effects in the following ways:

¢ | Avoiding “wholesale” import directives
e | Using only selective “single name” import directives or using fully qualified names (in both cases,
provided that the language offers the\respective capabilities)

6.12.4 Implications for Standardization
In futufe standardization activitjes;the following items should be considered:

e | Languages should(nat have preference rules among mutable namespaces. Ambiguities should belillegal
and avoidable by-the user, for example, by using names qualified by their originating namespace

6.13 | Type/System [IHN]

6.13.1| Description of application vulnerability

When data values are converted from one data type to another, even when done intentionally, unexpected
results can occur.

6.13.2 Cross reference

JSF AV Rule: 148 and 183
MISRA C 2004: 6.1, 6.2, 6.3, 10.1, and 10.5
MISRA C++ 2008: 3-9-2, 5-0-3 to 5-0-14

© 1SO/IEC 2010 — All rights reserved 31

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

CERT C guidelines: DCLO7-C, DCL11-C, DCL35-C, EXP0O5-C and EXP32-C
Ada Quaility and Style Guide: 3.4

6.13.3 Mechanism of failure

The type of a data object informs the compiler how values should be represented and which operations may be

applied. The type system of a language is the set of rules used by the language to structure and organize its

collection of types. Any attempt to manipulate data objects with inappropriate operations is a type error. A

program

Every pro
expressio
it does ng
run time

In practic
inclusion
language
safety mg

Sometim
example,

flo
int
a :

The varia
An implic
example,

Type equ
without |
two varia
type nam
There arg
a prograr
language

S 5ald O De type saje (Or type secure) 1T It Can be demonstrated that It nas No type errors [£7].

sramming language has some sort of type system. A language is statically typed if the type-of ever
n is known at compile time. The type system is said to be strong if it guarantees type saféety'and w
t. There are strongly typed languages that are not statically typed because they enfokce type safet
Checks [27].

hl terms, nearly every language falls short of being strongly typed (in an ideal'sense) because of th
of mechanisms to bypass type safety in particular circumstances. For that'reason and because eve

has a different type system, this description will focus on taking adyantage of whatever features f
y be available in the chosen language.

s it is appropriate for a data value to be converted from one type to another compatible one. For
consider the following program fragment, written in notspecific language:

bt a;

bger 1;

Ea + 1

ble "1" is of integer type. It must be conveérted to the float type before it can be added to the data

t conversion, as shown, is called coercion. If, on the other hand, the conversion must be explicit, f
"a := a + Float(i)", thenthe conversion is called a cast.

valence is the strictest form-of type compatibility; two types are equivalent if they are compatible
sing coercion or casting:Type equivalence is usually characterized in terms of name type equivale
bles have the same\type if they are declared in the same declaration or declarations that use the s
le—or structure.type equivalence—two variables have the same type if they have identical structur
variations©f.these approaches and most languages use different combinations of them [28]. The
hmer skilled in one language may very well code inadvertent type errors when using a different

Y
pak if
y with

U

ry
br type

value.

nce—
pme

efore,

It is desir

ple Tor a program 10 be type sarte because the application oT operations 10 operands OoT an Inappr

priate

type may produce unexpected results. In addition, the presence of type errors can reduce the effectiveness of

static analysis for other problems. Searching for type errors is a valuable exercise because their presence often

reveals design errors as well as coding errors. Many languages check for type errors—some at compile-time,

others at run-time. Obviously, compile-time checking is more valuable because it can catch errors that are not

executed

32

by a particular set of test cases.

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

Making the most use of the type system of a language is useful in two ways. First, data conversions always bear

the risk of changing the value. For example, a conversion from integer to float risks the loss of significant digits

while the inverse conversion risks the loss of any fractional value. Conversion of an integer value from a type with

a longer representation to a type with a shorter representation risks the loss of significant digits. This can produce

particularly puzzling results if the value is used to index an array. Conversion of a floating-point value from a type

with a longer representation to a type with a shorter representation risks the loss of precision. This can be

particularly severe in computations where the number of calculations increase as a power of the problem size. (It

should

be noted that similar surprises can occur when an application is retargeted to a machine with different

repres

Second
blundg

ty
ty

The de]
conver

6.13.4

This vy

6.13.5

Softwa

bntations of numeric values.)

, @ programmer can use the type system to increase the probability of catching design errots or cd
rs. For example, the following Ada fragment declares two distinct floating-point types:
pe Celsius is new Float;
pe Fahrenheit is new Float;
claration makes it impossible to add a value of type Celsius to a value of type Fahrenheit without ¢
sion.
Applicable language characteristics
Inerability is intended to be applicable to languages with the following characteristics:

Languages that support multiple types and allow conversions between types.
Avoiding the vulnerability or mitigating'its effects
re developers can avoid the vulnerability’or mitigate its ill effects in the following ways:

Take advantage of any facility offered by the programming language to declare distinct types ang
mechanism provided by the language processor and related tools to check for or enforce type
compatibility.

Use available language.and tools facilities to preclude or detect the occurrence of coercion. If it i
possible, use human review to assist in searching for coercions.
Avoid castingidata values except when there is no alternative. Document such occurrences so thg
justificatiefiis made available to maintainers.
Use the\most restricted data type that suffices to accomplish the job. For example, use an enume
typé to select from a limited set of choices (such as, a switch statement or the discriminant of a |
typé€) rather than a more general type, such as integer. This will make it possible for tooling to ch

ding

xplicit

use any

not
t the
ration

nion
eck if all

possible choices have been covered.

Treat every compiler, tool, or run-time diagnostic concerning type compatibility as a serious issue. Do not

resolve the problem by modifying the code by inserting an explicit cast, without further analysis;
examine the underlying design to determine if the type error is a symptom of a deeper problem.

instead

Never ignore instances of coercion; if the conversion is necessary, convert it to a cast and document the

rationale for use by maintainers.

Analyze the problem to be solved to learn the magnitudes and/or the precisions of the quantities needed

as auxiliary variables, partial results and final results.

ISO/IEC 2010 — All rights reserved

33

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

6.13.6 Implications for standardization

In future standardization activities, the following items should be considered:

e Language specifiers should standardize on a common, uniform terminology to describe their type systems

so that programmers experienced in other languages can reliably learn the type system of a language that

is

new to them.

e Provide a mechanism for selecting data types with sufficient capability for the problem at hand.

e Provide a way for the computation to determine the limits of the data types actually selected.
e Lphnguage implementers should consider providing compiler switches or other tools to providge.the !

6.14
6.14.1

Interfacin
compute
be made
of miscal
integrity.
given, or

6.14.2

JSF AV RY
MISRA C
MISRA C+
CERT C g\
Ada Quai

6.14.3

Compute
integer, |
graphics
sets may
not, it is g

ppssible degree of checking for type errors.

Bit Representations [STR]
Description of application vulnerability

g with hardware, other systems and protocols often requires access tocone’or more bits in a singld
word, or access to bit fields that may cross computer words for the'machine in question. Mistake
s to what bits are to be accessed because of the “endianness” of‘the processor (see below) or be
ulations. Access to those specific bits may affect surrounding-hits in ways that compromise their

This can result in the wrong information being read fromhardware, incorrect data or commands
nformation being mangled, which can result in arbitrdry €ffects on components attached to the s

Cross reference

les 147, 154 and 155

P004: 3.5, 6.4, 6.5, and 12.7

+2008: 5-0-21, 5-2-4 to 5-2-9, and 9-5-1

idelines: EXP38-C, INTOO-C, INTQ7-€, INT12-C, INT13-C, and INT14-C
ity and Style Guide: 7.6.1 through 7.6.9, and 7.3.1

Mechanism of failure

bng, and eventbig'integers. Interfacing with protocols, device drivers, embedded systems, low leve
br other extérnal constructs may require each bit or set of bits to have a particular meaning. Thos
or maysnot coincide with the sizes supported by a particular language implementation. When the
ommoh practice to pack all of the bits into one word. Masking and shifting of the word using pow

r languages frequently provide a variety of sizes for integer variables. Languages may support shof

ighest

S can
fause

being
stem.

—

b bit
do
ers of

tindnid | hite Ar pc f arc af Y+ ol Ak colhente AFf Whive (FAy Ay

two to i~| au TN icing o DO nic o a T
CK-OU R EPHG U BRSO USRS SHMR S O POWEFS Ot PHEK- O U SHBSETS O+ Do EXampre st

28=2%+23+2" to create the mask 11100 and then shifting 2 bits) provides a way of extracting those bits.

Knowledge of the underlying bit storage is usually not necessary to accomplish simple extractions such as these.

Problems can arise when programmers mix their techniques to reference the bits or output the bits. Problems

can arise when programmers mix arithmetic and logical operations to reference the bits or output the bits. The

storage o

34

rdering of the bits may not be what the programmer expects.

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

Packing of bits in an integer is not inherently problematic. However, an understanding of the intricacies
of bit level programming must be known. Some computers or other devices store the bits left to right
while others store them right to left. The type of storage can cause problems when interfacing with
external devices that expect the bits in the opposite order. One problem arises when assumptions are
made when interfacing with external constructs and the ordering of the bits or words are not the same
as the receiving entity. Programmers may inadvertently use the sign bit in a bit field and then may not
be aware that an arithmetic shift (sign extension) is being performed when right shifting causing the sign
bit to be extended into other fields. Alternatively, a left shift can cause the sign bit to be one. Bit
mani;lulations can also be problematic when the manipulations are done on binary encoded recprds
that span multiple words. The storage and ordering of the bits must be considered when dainhg pitwise
operatjons across multiple words as bytes may be stored in big endian or little endian format.

6.14.4 Applicable language characteristics

This vdlnerability description is intended to be applicable to languages with the follewing characteristics:
e | Languages that allow bit manipulations.

6.14.5 Avoiding the vulnerability or mitigating its effects

Softwdre developers can avoid the vulnerability or mitigate its ill effédts in the following ways:

e | Any assumption about bit ordering should be explicitly documented.
e | The way bit ordering is done on the host system and-on the systems with which the bit manipulations will
be interfaced should be understood.

o | Bit fields should be used in languages that support them.

o | Bit operators should not be used on signed operands.

e | Localize and document the code asseciated with explicit manipulation of bits and bit fields.

6.14.4 Implications for standardization
In futufe standardization activities;the following items should be considered:

e | For languages that are commonly used for bit manipulations, an API for bit manipulations that is
independent of word size and machine instruction set should be defined and standardized.

6.15 | Floating-point Arithmetic [PLF]

6.15.1| Description of application vulnerability

Most real numbers cannot be represented exactly in a computer. To represent real numbers, most computers
use ANSI/IEEE Std 754 [35]. The bit representation for a floating-point number can vary from compiler to compiler
and on different platforms. Relying on a particular representation can cause problems when a different compiler
is used or the code is reused on another platform. Regardless of the representation, many real numbers can only
be approximated since representing the real number using a binary representation would require an endlessly
repeating string of bits or more binary digits than are available for representation. Therefore it should be
assumed that a floating-point number is only an approximation, even though it may be an extremely good one.

© ISO/IEC 2010 — Al rights reserved 35

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

Floating-point representation of a real number or a conversion to floating-point can cause surprising results and
unexpected consequences to those unaccustomed to the idiosyncrasies of floating-point arithmetic.

Algorithms that use floating point can have anomalous behaviour when used with certain values. The most
common results are erroneous results or algorithms that never terminate for certain segments of the numeric
domain, or for isolated values.

6.15.2 Cross reference

JSF AV Ryles: 146, 147, 184, 197, and 202

MISRA C p004: 1.5, 12.12, 13.3,and 13.4

MISRA C4+ 2008: 0-4-3, 3-9-3, and 6-2-2

CERT C gyidelines: FLPOO-C, FPO1-C, FLP02-C and FLP30-C
Ada Quaility and Style Guide: 5.5.6 and 7.2.1 through 7.2.8

6.15.3 Mechanism of failure

Floating-point numbers are generally only an approximation of the actual value.\Jn the base 10 world, the alue
of 1/3is 0.333333... The same type of situation occurs in the binary world/but'numbers that can be repres¢nted
with a linjited number of digits in base 10, such as 1/10=0.1 become endlessly repeating sequences in the bjnary
world. S¢ 1/10 represented as a binary number is:

0.0001100110011001100110011001100110011001100110011

Which is P*1/2 + 0¥1/4 + 0*1/8 + 1*1/16 + 1*1/32 + 0*1/64... and no matter how many digits are used, the
representation will still only be an approximation of 1/40. Therefore when adding 1/10 ten times, the final fesult
may or may not be exactly 1.

Accumulgting floating point values through the repeated addition of values, particularly relatively small valyes,
can provifle unexpected results. Using anjaccumulated value to terminate a loop can result in an unexpectefd
number gf iterations. Rounding and-truihcation can cause tests of floating-point numbers against other valyes to
yield unekpected results. Another cause of floating point errors is reliance upon comparisons of floating point
values or|the comparison of a fleating point value with zero. Tests of equality/inequality can vary due to
propagat|on or conversion‘errors. Differences in magnitudes of floating-point numbers can result in no change of
a very large floating-paint.number when a relatively small number is added to or subtracted from it.

Manipulating bits in floating-point numbers is also very implementation dependent. Though IEEE 754 is a
commonly us€d representation for floating-point data types, it is not universally used or required by all computer

language$.~Some languages predate IEEE 754 and make the support for the standard optional. One IEEE 754

representation uses a 24-bit mantissa (including the sign bit) and an 8-bit exponent, but the number of bits
allocated to the mantissa and exponent can vary when using other representations, as can the particular
representation used for the mantissa and exponent. Even within IEEE 754, various alternative representations are
permitted for the “extended precision” format (from 80- to 128-bit representations, with or without a hidden bit).
Typically special representations are specified for positive and negative zero and infinity. Relying on a particular
bit representation is inherently problematic, especially when a new compiler is introduced or the code is reused
on another platform. The uncertainties arising from floating-point can be divided into uncertainty about the
actual bit representation of a given value (such as, big-endian or little-endian) and the uncertainty arising from

36 © 1SO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

the rounding of arithmetic operations (for example, the accumulation of errors when imprecise floating-point

values

are used as loop indices).

6.15.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

All languages with floating-point variables can be subject to rounding or truncation errors.

6.15.5

Softwa

6.15.6

In futu

Avoiding the vulnerability or mitigating its effects
re developers can avoid the vulnerability or mitigate its ill effects in the following ways:

Do not use a floating-point expression in a Boolean test for equality. Instead, use coding that det
the difference between the two values to determine whether the difference is adceptably small ¢
so that two values can be considered equal. Note that if the two values are'Véry large, the “smal
enough” difference can be a very large number.

Use library functions with known numerical characteristics whenever.possible.

Unless the use of floating-point is simple, an expert in numerical-analysis should check the stabili
accuracy of the algorithm employed.

Avoid the use of a floating-point variable as a loop counter. If necessary to use a floating-point v
loop control, use inequality to determine the loop control'(that is, <, <=, > or >=).

Understand the floating-point format used to represent the floating-point numbers. This will prg
some understanding of the underlying idiosyncrasies of floating-point arithmetic.

Manipulating the bit representation of a floating-point number should not be done except with b
language operators and functions that are désigned to extract the mantissa and exponent.

Do not use floating-point for exact valies such as monetary amounts. Use floating-point only wh
necessary such as for fundamentally inexact values such as measurements.

Consider the use of decimal fleating-point facilities when available.
Implications for standardization
re standardization activities, the following items should be considered:

Languages that-do not already adhere to or only adhere to a subset of ANSI/IEEE 754 should cons
adhering-cémpletely to the standard. Examples of standardization that should be considered:
0-—C'should consider requiting ANSI/IEEE 754 for floating-point arithmetic, rather than prov
an option, as is the case in ISO/IEC 9899:1999[4].

ermines
nough

ty and

hlue as a

vide

uilt-in

ider

ding it as

0o Java should consider f||||\’/ :\dhnring to ANQII/IFFF 754 instead of a subset

Languages should consider providing a means to generate diagnostics for code that attempts to test

equality of two floating point values.
Languages should consider standardizing their data type to ISO/IEC 10967-1:1994 and ISO/IEC 10
2:2001.

© ISO/IEC 2010 — All rights reserved

967-

37

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

6.16 Enumerator Issues [CCB]
6.16.1 Description of application vulnerability

Enumerations are a finite list of named entities that contain a fixed mapping from a set of names to a set of
integral values (called the representation) and an order between the members of the set. In some languages
there are no other operations available except order, equality, first, last, previous, and next; in others the full
underlying representation operators are available, such as integer “+” and “-” and bit-wise operations.

Most languages that provide enumeration types also provide mechanisms to set non-default representatiorLs. If
these mechanisms do not enforce whole-type operations and check for conflicts then some membefs of the set
may not be properly specified or may have the wrong mappings. If the value-setting mechanisms aré positignal
only, then there is a risk that improper counts or changes in relative order will result in an incokrect mapping.

For array$ indexed by enumerations with non-default representations, there is a risk of‘structures with holes, and
if those indexes can be manipulated numerically, there is a risk of out-of-bound acgesses of these arrays.

Most of these errors can be readily detected by static analysis tools with appraopriate coding standards,
restrictiophs and annotations. Similarly mismatches in enumeration value specification can be detected statigally.

Without guch rules, errors in the use of enumeration types are computationally hard to detect statically as yell as
being diffiicult to detect by human review.

6.16.2 (ross reference

JSF AV Ryle: 145

MISRA C 2004: 9.2 and 9.3

MISRA C4+ 2008: 8-5-3

CERT C gyidelines: INT09-C
Holzmann rule 6

Ada Quaility and Style Guide: 3.4.2

6.16.3 Mechanism of failure

As a progfam is developedrand maintained the list of items in an enumeration often changes in three basic Ways:
new elemjents are added:to the list; order between the members of the set often changes; and representation

(the map|of values_ ofihe items) change. Expressions that depend on the full set or specific relationships between
elements|of theset-can create value errors that could result in wrong results or in unbounded behaviours iflused
as array ipdijces.

Improperly mapped representations can result in some enumeration values being unreachable, or may create
“holes” in the representation where undefinable values can be propagated.

If arrays are indexed by enumerations containing nondefault representations, some implementations may leave
space for values that are unreachable using the enumeration, with a possibility of unnecessarily large memory
allocations or a way to pass information undetected (hidden channel).

38 © 1SO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

When enumerators are set and initialized explicitly and the language permits incomplete initializers, then changes
to the order of enumerators or the addition or deletion of enumerators can result in the wrong values being

assigned or default values being assigned improperly. Subsequent indexing or switch/case statements can result

in illegal accesses and possibly unbounded behaviours.

6.16.4

Applicable language Characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

6.16.5

Softwa

Languages that do not require full coverage of an enumeration in a switch/case statement.

Languages that provide a default choice in a switch/case statement.

Languages that permit incomplete mappings between enumerator specification and yalue assignment, or

that provide a positional-only mapping require additional static analysis tools and,dnnotations to
identify the complete mapping of every literal to its value.

Languages that provide a trivial mapping to a type such as integer require additional static analys
to prevent mixed type errors. They also cannot prevent illegal values from;being placed into varig
such enumerator types. For example:

enum Directions {back, forward, stop};
enum Directions a = forward, b = stop, c-= atb;

In this example, C may have a value not defined by thé.ehumeration, and any further use as that
enumeration will lead to erroneous results.

Some languages provide no enumeration capability, leaving it to the programmer to define name
constants to represent the values and ranges.

Avoiding the vulnerability or mitigating its effects
re developers can avoid the vulnerability or mitigate its ill effects in the following ways:

Use static analysis tools that:will detect inappropriate use of enumerators, such as using them as
or bit maps, and that detect enumeration definition expressions that are incomplete or incorrect
languages with a complete enumeration abstraction this is the compiler.

When a language requires full coverage of an enumeration in a switch/case statement, a default
should not he\provided. For languages that do not require full coverage, then a default choice wi
possible-ertor generation should be provided to ensure that there is full coverage.

When-Anamed syntax is available for representation setting, coverage analysis can eliminate the o
issues and the incomplete coverage issues as long as no default choice is given.

help

is tools
bles of

integers
For

choice
th a

rder

6.16.6 Implications for standardization

In future standardization activities, the following items should be considered:

Languages that currently permit arithmetic and logical operations on enumeration types could provide a

mechanism to ban such operations program-wide.

Languages that provide automatic defaults or that do not enforce static matching between enumerator

definitions and initialization expressions could provide a mechanism to enforce such matching.

© ISO/IEC 2010 — All rights reserved

39

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

6.17 Numeric Conversion Errors [FLC]

6.17.1 Description of application vulnerability

Certain contexts in various languages may require exact matches with respect to types [32]:

aVar := anExpression

valuel + value2

foo(argl, arg2, arg3, argh)
Type conyersion seeks to follow these exact match rules while allowing programmers some flexibilitydn using
values suth as: structurally-equivalent types in a name-equivalent language, types whose value ranges may| be
distinct bpt intersect (for example, subranges), and distinct types with sensible/meaningful corfesponding Values
(for example, integers and floats). Explicit conversions are called type casts. An implicit typeconversion befween
compatiblle but not necessarily equivalent types is called type coercion.
Numeric fonversions can lead to a loss of data, if the target representation is not.capable of representing the
original vplue. For example, converting from an integer type to a smaller integertype can result in truncation if
the original value cannot be represented in the smaller size and converting-a‘floating point to an integer caI
result in 3 loss of precision or an out-of-range value.
Type conyersion errors can lead to erroneous data being generated,‘algorithms that fail to terminate, array
bounds efrors, and arbitrary program execution.

6.17.2 (ross reference
CWE:
192.|Integer Coercion Error
MISRA C p004: 10.1-10.6, 11.3-11.5, and 12.9
MISRA C4+ 2008: 2-13-3, 5-0-3, 5-0-4, 5-0+5, 5-0-6, 5-0-7, 5-0-8, 5-0-9, 5-0-10, 5-2-5, 5-2-9, and 5-3-2
CERT C gyidelines: FLP34-C, INTO2-C-INTO08-C, INT31-C, and INT35-C
6.17.3 Mechanism of failure
Numeric fonversion errors«esults in data integrity issues, but they may also result in a number of safety angl
security fulnerabilities.
Vulnerabllities typically occur when appropriate range checking is not performed, and unanticipated values|are
encountdred, Fhese can result in safety issues, for example, when the Ariane 5 launcher failure occurred dyie to
an improperhr-handled-conversion-errorresultingin-the processerbeirgshutdewn 29

Conversion errors can also result in security issues. An attacker may input a particular numeric value to exploit a
flaw in the program logic. The resulting erroneous value may then be used as an array index, a loop iterator, a
length, a size, state data, or in some other security critical manner. For example, a truncated integer value may
be used to allocate memory, while the actual length is used to copy information to the newly allocated memory,
resulting in a buffer overflow [30].

40 © ISO/IEC 2010 - All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

Numeric type conversion errors often lead to undefined states of execution resulting in infinite loops or
crashes. In some cases, integer type conversion errors can lead to exploitable buffer overflow conditions,
resulting in the execution of arbitrary code. Integer type conversion errors result in an incorrect value being
stored for the variable in question.

6.17.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

¢ | Languages that perform implicit type conversion (coercion).

e | Weakly typed languages that do not strictly enforce type rules.

e | Languages that support logical, arithmetic, or circular shifts on integer values.
e | Languages that do not generate exceptions on problematic conversions.

6.17.5 Avoiding the vulnerability or mitigating its effects
Softwdre developers can avoid the vulnerability or mitigate its ill effects in the following ways:

o | The first line of defense against integer vulnerabilities should be range -checking, either explicitly pr
through strong typing. All integer values originating from a sourcethat is not trusted should be \alidated
for correctness. However, it is difficult to guarantee that multiple input variables cannot be manipulated
to cause an error to occur in some operation somewherelin a program [30].
e | An alternative or ancillary approach is to protect eachyoperation. However, because of the large humber
of integer operations that are susceptible to these\problems and the number of checks required to
prevent or detect exceptional conditions, this appfoach can be prohibitively labor intensive and gxpensive
to implement.
e | Alanguage that generates exceptions on‘erroneous data conversions might be chosen. Design opjects
and program flow such that multiple 0r complex casts are unnecessary. Ensure that any data type casting
that you must use is entirely understood to reduce the plausibility of error in use.

¢ | The use of static analysis can often identify whether or not unacceptable numeric conversions willl occur.

Verifiaply in-range operations are often preferable to treating out of range values as an error condition because
the handling of these errorsthas been repeatedly shown to cause denial-of-service problems in actual
applicdtions. Faced with"a‘numeric conversion error, the underlying computer system may do one of twg things:
(a) sigrjal some sort.ofterror condition, or (b) produce a numeric value that is within the range of representable
valueslon that systém. The latter semantics may be preferable in some situations in that it allows the computation
to progeed, thus-avoiding a denial-of-service attack. However, it raises the question of what numeric resylt to
returnftothe.user.

A recent innovation from ISO/IEC TR 24731-1 [13] is the definition of the rsize_t type for the C programming
language. Extremely large object sizes are frequently a sign that an object’s size was calculated incorrectly. For
example, negative numbers appear as very large positive numbers when converted to an unsigned type like
size_t. Also, some implementations do not support objects as large as the maximum value that can be
represented by type Size_t. For these reasons, it is sometimes beneficial to restrict the range of object sizes to
detect programming errors. For implementations targeting machines with large address spaces, it is
recommended that RSIZE_MAX be defined as the smaller of the size of the largest object supported or
(SI1ZE_MAX >> 1), even if this limit is smaller than the size of some legitimate, but very large, objects.

© 1SO/IEC 2010 — All rights reserved 41

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

Implementations targeting machines with small address spaces may wish to define RSIZE_MAX as SIZE_MAX,
which means that there is no object size that is considered a runtime-constraint violation.

6.17.6

Implications for standardization

In future standardization activities, the following items should be considered:

6.18

6.18.1

Some prdgramming languages use a termination character to indicate the end of aistring. Relying on the
occurrenge of the string termination character without verification can lead to.either exploitation or unexpé
behaviouf.

6.18.2

CWE:

170.[Improper Null Termination
CERT C gyidelines: STR03-C, STR31-C, STR32-C, and STR36-C

6.18.3

String terfmination errors occur when the termination character is solely relied upon to stop processing on t
string and the termination character is not present. Continued processing on the string can cause an error

potentially be exploited as a buffer overflow. This may occur as a result of a programmer making an assum
that a str|ng that is passed as input @r generated by a library contains a string termination character when if

not.

Programmers may forget to allocate space for the string termination character and expect to be able to sto
length chpracter stringsinyan array that is n characters long. Doing so may work in some instances dependin
what is stored afterthe array in memory, but it may fail or be exploited at some point.

6.18.4

Languages should consider providing means similar to the ISO/IEC TR 24731-1 definition of rsize_t

type for C to restrict object sizes so as to expose programming errors.

Languages should consider making all type conversions explicit or at least generating warnings fori
cpnversions where loss of data might occur.

String Termination [CJM]

Description of application vulnerability

Cross reference

Mechanism of failure

Applicable language characteristics

mplicit

bcted

he

br

btion
does

eann
g on

This vulnerability description is intended to be applicable to languages with the following characteristics:

6.18.5

Languages that use a termination character to indicate the end of a string.
Languages that do not do bounds checking when accessing a string or array.

Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

42

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

6.18.6

ISO/IEC TR 24772:2010(E)

Do not rely solely on the string termination character.

Use library calls that do not rely on string termination characters such as Strncpy instead of Strcpy in

the standard C library.

Implications for standardization

In future standardization activities, the following items should be considered:

Eliminating library calls that make assumptions about string termination characters.

6.19

6.19.1 Description of application vulnerability

A buffe
results

6.19.2

CWE:

12

12
JSF AV
MISRA
MISRA
CERT(Q

6.19.3

There
some

Checking bounds when an array or string is accessed.
Specifying a string construct that does not need a string termination character.

Boundary Beginning Violation [XYX]

in an access to storage that occurs before the beginning of the intended,object.

Cross reference

4. Boundary Beginning Violation (‘Buffer Underwrite’)
9. Unchecked Array Indexing

Rule: 25

C2004:21.1

C++ 2008: 5-0-15 to 5-0-18

guidelines: ARR30-C, ARR32-C, and ARR38-C

Mechanism of failure

hre several kinds of failures-({in\all cases an exception may be raised if the accessed location is outs
ermitted range):

A read access wijll'teturn a value that has no relationship to the intended value, such as, the valug
another variable or uninitialized storage.

An out-of<belinds read access may be used to obtain information that is intended to be confiden
A write.aecess will not result in the intended value being updated and may result in the value of 4
unrelated object (that happens to exist at the given storage location) being modified.

r underwrite condition occurs when an array is indexed outside its lower bounds, or pointer arithqetic

de of

b of

tial.

WHen an array has been allocated storage on the stack an out-of-bounds write access may modif

Yy

internal runtime housekeeping information (for example, a function's return address) which might change

a program’s control flow.

6.19.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

ISO/IEC 2010 — All rights reserved

43

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IECT

R 24772:2010(E)

e lLanguages that do not detect and prevent an array being accessed outside of its declared bounds (either

by means of an index or by pointer arithmetic).

e lLanguages that do not automatically allocate storage when accessing an array element for which storage

has not already been allocated.

6.19.5 Avoiding the vulnerability or mitigating its effects

Software

developers can avoid the vulnerability or mitigate its ill effects in the following ways:.

U
o)
U

-

Some gui
the basis
underfloy
a negativ
positive 3

In the pas

a high ruptime overhead (often because unnecessary.checks were performed). It is now practical for transl

to perfor
only mad

6.19.6

In future

=

6.20

6.20.1

se of implementation provided functionality to automatically check array element accesses and-pi
ut-of-bounds accesses.

se of static analysis to verify that all array accesses are within the permitted bounds. Sugh-analysi
pguire that source code contain certain kinds of information, such as, that the bounds,of all declar
rrays be explicitly specified, or that pre- and post-conditions be specified.

bnity checks should be performed on all calculated expressions used as an artay index or for point
Fithmetic.

Heline documents recommend only using variables having an unsigned type when indexing an arra
that an unsigned type can never be negative. This recommendation simply converts an indexing

V to an indexing overflow because the value of the variable wilkwrap to a large positive value rathe
b one. Also some language support arrays whose lower bodnd is greater than zero, so an index ca
nd be less than the lower bound.

t the implementation of array bound checking has'sometimes incurred what has been considered

M sophisticated analysis that significantly_reduces the runtime overhead (because runtime checks
e when it cannot be shown statically that’no bound violations can occur).

mplications for standardization

tandardization activities, the following items should be considered:

ould enable array bounds checking, if such a pointer type is not already in the standard.
Unchecked Array Indexing [XYZ]

Description of application vulnerability

event

5 may

y, on

br than
h be

to be
htors
are

hnguages that use pointer types should consider specifying a standardized feature for a pointer type that

Unchecked array indexing occurs when a value is used as an index into an array without checking that it falls

within the acceptable index range.

6.20.2 Cross reference

CWE:
129.

Unchecked Array Indexing

JSF AV Rules: 164 and 15
MISRA C 2004: 21.1

44

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

MISRA C++ 2008: 5-0-15 to 5-0-18
CERT C guidelines: ARR30-C, ARR32-C, ARR33-C, and ARR38-C
Ada Quaility and Style Guide: 5.5.1, 5.5.2, 7.6.7, and 7.6.8

6.20.3 Mechanism of failure

A single fault could allow both an overflow and underflow of the array index. An index overflow exploit might use
buffer overflow techniques, but this can often be exploited without having to provide "large inputs." Array index

overflqwstan afso trigger out-of-bounds Tead operations, or operations on the Wrong objects; that 15, “buffer
overfldws" are not always the result. Unchecked array indexing, depending on its instantiation, can be responsible
for any number of related issues. Most prominent of these possible flaws is the buffer overflow condition. Due to
this fagt, consequences range from denial of service, and data corruption, to arbitrary code execution. THe most
common condition situation leading to unchecked array indexing is the use of loop index variables as buffer
indexep. If the end condition for the loop is subject to a flaw, the index can grow or shrinkunbounded, therefore
causing a buffer overflow or underflow. Another common situation leading to this-¢ondition is the use of|a
functign's return value, or the resulting value of a calculation directly as an index in to a buffer. Unchecked array
indexing can result in the corruption of relevant memory and perhaps instructiohs, lead to the program Halting, if
the values are outside of the valid memory area. If the memory corrupted'is’data, rather than instructions, the
system might continue to function with improper values. If the corrupted memory can be effectively controlled, it
may be possible to execute arbitrary code, as with a standard buffer-overflow.

Langudge implementations might or might not statically detéct out of bound access and generate a compile-time
diagnopstic. At runtime the implementation might or mightnot detect the out-of-bounds access and provide a
notificgtion at runtime. The notification might be treatable by the program or it might not be. Accesses right
violate|the bounds of the entire array or violate the\bounds of a particular index. It is possible that the fofmer is
checkdgd and detected by the implementation while the latter is not. The information needed to detect the
violatign might or might not be available depénding on the context of use. (For example, passing an array to a
subroytine via a pointer might deprive the'subroutine of information regarding the size of the array.)

Aside from bounds checking, some lahguages have ways of protecting against out-of-bounds accesses. Spme
languages automatically extend the bounds of an array to accommodate accesses that might otherwise Have been
beyond the bounds. Howgver, this may or may not match the programmer's intent and can mask errors.| Some
languages provide for whole array operations that may obviate the need to access individual elements thus
preventing unchecked\array accesses.

6.20.4 Applicable language characteristics

This vylnetability description is intended to be applicable to languages with the following characteristics:

e languages that do not automatically bounds check array accesses.
e languages that do not automatically extend the bounds of an array to accommodate array accesses.

6.20.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Include sanity checks to ensure the validity of any values used as index variables.

ISO/IEC 2010 — All rights reserved 45

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

e The choice could be made to use a language that is not susceptible to these issues.
e When available, use whole array operations whenever possible.

6.20.6 Implications for standardization
In future standardization activities, the following items should be considered:

e lLanguages should consider providing compiler switches or other tools to check the size and bounds of
arrays and their extents that are statically determinable.

e Lhnguages should consider providing whole array operations that may obviate the need to access
ndividual elements.

°
- =

hnguages should consider the capability to generate exceptions or automatically extend/thebounds of

Q)

h array to accommodate accesses that might otherwise have been beyond the bounds.
6.21 Unchecked Array Copying [XYW]

6.21.1 Description of application vulnerability

A buffer gverflow occurs when some number of bytes (or other units of storage) is copied from one buffer fo
another gnd the amount being copied is greater than is allocated for the destination buffer.

6.21.2 (ross reference

CWE:
121.Stack-based Buffer Overflow

JSF AV Ryle: 15

MISRA C p004: 21.1

MISRA C4+ 2008: 5-0-15 to 5-0-18

CERT C gyidelines: ARR33-C and STR31-C

Ada Quaility and Style Guide: 7.6.7 and 7:6:8

6.21.3 Mechanism of failure

Many languages and some third'party libraries provide functions that efficiently copy the contents of one afea of
storage tp another areaof'storage. Most of these libraries do not perform any checks to ensure that the copied
from/to dtorage areais‘arge enough to accommodate the amount of data being copied.

The arguments to-these library functions include the addresses of the contents of the two storage areas and the
number gf bytes (or some other measure) to copy. Passing the appropriate combination of incorrect start

dd aornumbhar Af hhbac +n camy maalene i naccilha dbn vaad Ar i A ibcids Af+h A o
addresse$-errumberefbytesto-copy-rmakesit £

HUacatad +A he
HPOSSHeto a0 WHHE-OHtSIGE-01thRe-S o €atea—+o

source/destination area. When passed incorrect parameters the library function performs one or more
unchecked array index accesses, as described in Unchecked Array Indexing [XYZ].

6.21.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

e Languages that contain standard library functions for performing bulk copying of storage areas.

46 © ISO/IEC 2010 - All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

The same range of languages having the characteristics listed in Unchecked Array Indexing [XYZ].

6.21.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

Only use library functions that perform checks on the arguments to ensure no buffer overrun can occur
(perhaps by writing a wrapper for the Standard provided functions). Perform checks on the argument

expressions prior to calling the Standard libraryv function to ensure that no buffer overrun will occur
L Lt [=] T .

Use static analysis to verify that the appropriate library functions are only called with arguments

information, for example, that the bounds of all declared arrays be explicitly specified,‘dr,. that pr
post-conditions be specified as annotations or language constructs.

6.21.4 Implications for standardization

In futu

6.22

re standardization activities, the following items should be considered:

no buffer overrun can occur.
Languages should consider providing full array assignment.

Buffer Overflow [XZB]

6.22.1 Description of application vulnerability

not result in a buffer overrun. Such analysis may require that source code contain certaimkinds qf

that do

b- and

Languages should consider only providing libraries that perform.checks on the parameters to enqure that

A buffgr overflow arises when, due to unchecked array indexing or unchecked array copying, storage outpide the

ously or
b buffer

buffer s accessed. Usually overflows describe the situation where such storage is then written. Depending on
wherelthe buffer is located, logically unrelated portions of the stack or the heap could be modified malic
unintefptionally. Usually, buffer overflows'describe accesses to contiguous memory beyond the end of th
data, als may arise when arrays arecapied without length checks. However, accessing before the beginning of the
buffer data is equally possible, dangerous and maliciously exploitable.
6.22.2 Cross referencé
CWE:

122. Heap-based Buffer Overflow
JSF AV|Rule: 15
MISRA|C 2004: 21.1
MISRALE++2008:-5-0-15+t6-5-0-18

CERT C guidelines: ARR33-C, STR31-C and MEM35-C

6.22.3

Mechanism of failure

Overwriting adjacent data (or data at arbitrarily computed locations) outside the area allocated for an array leads
to value failures of the application. The program statements causing the buffer overflow are often difficult to find.

But not only data storage can be corrupted. Buffer overflow may also inadvertently or even maliciously overwrite

function pointers that may be in memory, pointing them to the attacker's code. Even in applications that do not

© ISO/IEC 2010 — All rights reserved

47

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

explicitly use function pointers, the run-time will usually store function pointers in memory. For example, object

methods in object-oriented languages are generally implemented using function pointers in data structures that

are kept in memory. Since the consequence of a buffer overflow can be targeted to cause arbitrary code

execution, this vulnerability can be used to subvert any security service.

6.22.4

Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

6.22.5

Software|developers can avoid the vulnerability or mitigate its.ill effects in the following ways:

6.22.6

In future ptandardization activities, the following items should be considered:

48

—

CJopying of arrays can be done without an automatic length check ensuring that source and target

gcations are of the same size.

Indexing of array elements can be done without an automatic check that the indexing is,within the
bpunds of the array.

Accesses might violate the physical bounds of the entire array or violate the logical bounds of a par
ektent. The vulnerability is somewhat mitigated, if the former violation is cheekedfor and detected

mplementation although the latter is not.

—

hnguages that provide bounds checking but permit the check to be supptessed.
he bounds of an array are not automatically extended to accommodate accesses that might other

>0

pve been beyond the bounds. (This may or may not match the¢programmer's intent.)

Avoiding the vulnerability or mitigating its effects

se a language or compiler that performs automatic bounds checking on elements accesses and
Ltomatic length checking on copying entire arrays.

necks.

U
a
Use an abstraction library to add checks.éf top of library functions that copy arrays without length
c
Checks that prevent overflows can be disabled in some languages to increase performance. This op
3

hould be used rarely.

mplementation-defined checks that prevent overflows can be enabled in some languages that do 1
pauire such checks. Thissoption should be used whenever feasible.

—

mplications for-standardization

Languages should provide safe copying of arrays as built-in operation.

icular
by the

vise

ion

ot

L nguages should consider I'\hl\'l prn\/idihg array copy routines in libraries that pnrfr\rm checks onth
o

parameters to ensure that no buffer overrun can occur.
Languages should perform automatic bounds checking on accesses to array elements. This capabilit
need to be disabled at times for performance reasons.

y may

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

6.23 Pointer Casting and Pointer Type Changes [HFC]
6.23.1 Description of application vulnerability

The code produced for access via a data or function pointer requires that the type of the pointer is appropriate
for the data or function being accessed. Otherwise undefined behaviour can occur. Specifically, “access via a
data pointer” is defined to be “fetch or store indirectly through that pointer” and “access via a function pointer” is
defined to be “invocation indirectly through that pointer.” The detailed requirements for what is meant by the

“apprdpriate” type may vary among languages.
Even iflthe type of the pointer is appropriate for the access, erroneous pointer operations can still\)catise g fault.
6.23.2 Cross reference

CWE:
136. Type Errors
148. Reliance on Data/Memory Layout
JSF AV|Rules: 182 and 183
MISRA|C 2004: 11.1, 11.2, 11.3,11.4, and 11.5
MISRA|C++ 2008: 5-2-2 to 5-2-9
CERT d guidelines: INT11-C and EXP36-A
Hatton 13: Pointer casts
Ada Quaility and Style Guide: 7.6.7 and 7.6.8

6.23.3] Mechanism of failure

If a pointer’s type is not appropriate for the data or function being accessed, data can be corrupted or pr{vacy can
be broken by inappropriate read or write operation using the indirection provided by the pointer value. With a
suitable type definition, large portions of'miemory can be maliciously or accidentally modified or read. Such
modifigation of data objects will genérally lead to value faults of the application. Modification of code elgments
such a$ function pointers or internal data structures for the support of object-orientation can affect contfol flow.
This can make the code susceptible to targeted attacks by causing invocation via a pointer-to-function that has
been manipulated to point to an attacker’s payload.

6.23.4 Applicablelanguage characteristics

This vylnerability description is intended to be applicable to languages with the following characteristics:

e | Rointers (and/or references) can be converted to different pointer types.
e Pointers to functions can be converted to pointers to data.

6.23.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Treat the compiler’s pointer-conversion warnings as serious errors.

© 1SO/IEC 2010 — All rights reserved 49

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

6.23.6

Adopt programming guidelines (preferably augmented by static analysis) that restrict pointer conversions.
For example, consider the rules itemized above from JSF AV [15], CERT C [11], Hatton [18], or MISRA C

[12].
Other means of assurance might include proofs of correctness, analysis with tools, verification
techniques, or other methods.

Implications for standardization

In future standardization activities, the following items should be considered:

6.24

6.24.1

—

hnguages should consider creating a mode that provides a runtime check of the validity of allacee

(]

bjects before the object is read, written or executed.
Pointer Arithmetic [RVG]

Description of application vulnerability

Using poihter arithmetic incorrectly can result in addressing arbitrary locations, which in turn can cause a p

to behavg in unexpected ways.

6.24.2

Cross reference

JSF AV Rule: 215
MISRA C p004: 17.1,17.2,17.3,and 17.4

MISRA CH+ 2008: 5-0-15 to 5-0-18
CERT C gyidelines: EXP08-C

6.24.3

Mechanism of failure

Pointer afithmetic used incorrectly can produce:

6.24.4

Addressing arbitrary memory-lecations, including buffer underflow and overflow.
Arbitrary code execution.
Addressing memory outside the range of the program.

Applicable language characteristics

This vulngrability description is intended to be applicable to languages with the following characteristics:

—

pnguages that allow pointer arithmetic.

6.24.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

50

Use pointer arithmetic only for indexing objects defined as arrays.
Prefer indexing for accessing array elements rather than using pointer arithmetic.
Limit pointer arithmetic calculations to the addition and subtraction of integers.

sed

ogram

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

6.24.6 Implications for standardization
[None]

6.25 Null Pointer Dereference [XYH]

6.25.1 Description of application vulnerability

A null-painter dereference takes place when a pointer with a value of NUI | is used as though it pointed to a valid

memofy location. This is a special case of accessing storage via an invalid pointer.
6.25.2 Cross reference

CWE:
476. NULL Pointer Dereference

JSF AV|Rule 174

CERT guidelines: EXP34-C

Ada Quaility and Style Guide: 5.4.5

6.25.3] Mechanism of failure

When p pointer with a value of NULL is used as though it pointedo a valid memory location, then a nulltpointer
derefefence is said to take place. This can result in a segmentation fault, unhandled exception, or accessjng
unantigipated memory locations.

6.25.4 Applicable language characteristics
This vylnerability description is intended to be@pplicable to languages with the following characteristics:

e | Languages that permit the use ofipointers and that do not check the validity of the location being
accessed prior to the access,
e | Languages that allow theluse of a NULL pointer.

6.25.5 Avoiding the vulnerability or mitigating its effects
Software developers ¢an avoid the vulnerability or mitigate its ill effects in the following ways:
¢ | Before dereferencing a pointer, ensure it is not equal to NULL.

6.25.4 Implications for standardization

In future standardization activities, the following items should be considered:

e Alanguage feature that would check a pointer value for NULL before performing an access should be
considered.

ISO/IEC 2010 - All rights reserved 51

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IECT

R 24772:2010(E)

6.26 Dangling Reference to Heap [XYK]

6.26.1 Description of application vulnerability

A dangling reference is a reference to an object whose lifetime has ended due to explicit deallocation or the stack

frame in which the object resided has been freed due to exiting the dynamic scope. The memory for the object

may be reused; therefore, any access through the dangling reference may affect an apparently arbitrary location

of memory, corrupting data or code.

This desc
reference

A notablg
same poi
leading t¢
repeated
another 1

Memory

With suff
run-time
a methog
been re-3

6.26.2

CWE:
415.
416.

MISRA C

MISRA C+

CERT C g\

Ada Quai

6.26.3

The lifetime of an object is the portion of program execution during which storage is guaranteed to be rese

ription concerns the former case, dangling references to the heap. The description of dangling
s to stack frames is [DCM]. In many languages references are called pointers; the issues aré)identi

special case of using a dangling reference is calling a deallocator, for example, free\(), twice o
hter value. Such a “Double Free” may corrupt internal data structures of the heap administration,
faulty application behaviour (such as infinite loops within the allocator, returning the same mem
y as the result of distinct subsequent allocations, or deallocating memory-egitimately allocated tg
equest since the first Free()call, to name but a few), or it may have ne adverse effects at all.

Corruption through the use of a dangling reference is among the mast difficult of errors to locate.

cient knowledge about the heap management scheme (often-provided by the OS (Operating Systd
system), use of dangling references is an exploitable vulferability, since the dangling reference prq
with which to read and modify valid data in the designated memory locations after freed memor
llocated by subsequent allocations.

Cross reference

Double Free (Note that Double Freé(415) is a special case of Use After Free (416))
Use After Free

P004: 17.1-6

+2008: 0-3-1, 7-5-1, 7:5-2, 7-5-3, and 18-4-1

idelines: MEMO01-G,-MEM30-C, and MEM31.C

ity and Style Guide? 5.4.5, 7.3.3, and 7.6.6

Mechanism of failure

tal.

n the

bry

m) or
vides
has

ved

for it. An

phject exists and retains its last-stored value throughout its lifetime. If an object is referred to outs

ide of

its lifetime, the behaviour is undefined. Explicit deallocation of heap-allocated storage ends the lifetime of the

object residing at this memory location (as does leaving the dynamic scope of a declared variable). The value of a

pointer becomes indeterminate when the object it points to reaches the end of its lifetime. Such pointers are

called dangling references.

The use of dangling references to previously freed memory can have any number of adverse consequences —

ranging from the corruption of valid data to the execution of arbitrary code, depending on the instantiation and

52

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

timing of the deallocation causing all remaining copies of the reference to become dangling, of the system's reuse

of the freed memory, and of the subsequent usage of a dangling reference.

Like memory leaks and errors due to double de-allocation, the use of dangling references has two common and

sometimes overlapping causes:

An error condition or other exceptional circumstances.
Developer confusion over which part of the program is responsible for freeing the memory.

If a pointer to previously freed memory is used, it is possible that the referenced memory has been reallg
Therefpre, assignment using the original pointer has the effect of changing the value of an unrelatedyvari
This influces unexpected behaviour in the affected program. If the newly allocated data happens to hold

descri

heap data. If one of these function pointers is overwritten with an address of malicious(code, execution
arbitrafy code can be achieved.

6.26.4

This vy

6.26.5

Softwa

tion, in an object-oriented language for example, various function pointers may be scattered with

Applicable language characteristics
Inerability description is intended to be applicable to languages with-the following characteristics:

Languages that permit the use of pointers and that permit explicit deallocation by the developer
provide for alternative means to reallocate memory stitlpointed to by some pointer value.
Languages that permit definitions of constructs that can be parameterized without enforcing the
consistency of the use of parameter at compile time.

Avoiding the vulnerability or mitigating'its effects
re developers can avoid the vulnerability-or mitigate its ill effects in the following ways:

Use an implementation that checks whether a pointer is used that designates a memory location
already been freed.

Use a coding style that does not permit deallocation.

In complicated error.conditions, be sure that clean-up routines respect the state of allocation pra
the language is pbject-oriented, ensure that object destructors delete each chunk of memory on
once. Ensuring that all pointers are set to NULL once the memory they point to have been freed
an effective-strategy. The utilization of multiple or complex data structures may lower the useful
this strategy.

Use.alstatic analysis tool that is capable of detecting some situations when a pointer is used after

cated.
able.

A class
n the
bf

that has

perly. If

\4
can be

hess of

the

storage it refers to is no longer a pointer to valid memory location.

Allocating and freeing memory in different modules and levels of abstraction burdens the progra

mmer

with tracking the lifetime of that block of memory. This may cause confusion regarding when and if a
block of memory has been allocated or freed, leading to programming defects such as double-free

vulnerabilities, accessing freed memory, or dereferencing NULL pointers or pointers that are not

initialized. To avoid these situations, it is recommended that memory be allocated and freed at the same

level of abstraction, and ideally in the same code module.

ISO/IEC 2010 — All rights reserved

53

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

6.26.6 Implications for standardization

In future standardization activities, the following items should be considered:

6.27

6.27.1

Many languages provide a mechanism that allows objects and/or functionsto be defined parameterized by
and thenfinstantiated for specific types. In C++ and related languages, these are referred to as “templates”,
Ada and Java, “generics”. To avoid having to keep writing ‘templates/generics’, in this clause these will simg
referred {o collectively as generics.

Used wel|, generics can make code clearer, more predictable-and easier to maintain. Used badly, they can h
the reverge effect, making code difficult to review andumaintain, leading to the possibility of program error.

6.27.2

JSF AV Ryles: 101, 102, 103, 104, and 105
MISRA C4+ 2008: 14-6-1, 14-6-2, 14-7-1¢t0-14-7-3, 14-8-1, and 14-8-2
Ada Qual|ty and Style Guide: 8.3.1 through 8.3.8, and 8.4.2

6.27.3

The valug of generics comes from having a single piece of code that supports some behaviour in a type

independent manneft./Fhis simplifies development and maintenance of the code. It should also assist in the
understanding of‘the code during review and maintenance, by providing the same behaviour for all types w
which it i§ instantiated.

Implementations of the free function could tolerate multiple frees on the same reference/pointer or frees

of memory that was never allocated.

Language specifiers should design generics in such a way that any attempt to instantiate a generic with

constructs that do not provide the required capabilities results in a compile-time error.

Fpr properties that cannot be checked at compile time, language specitiers should provide an asser
echanism for checking properties at run-time. It should be possible to inhibit assertion checkingif
efficiency is a concern.
storage allocation interface should be provided that will allow the called function to sét the point
uked to NULL after the referenced storage is deallocated.

emplates and Generics [SYM]

Description of application vulnerability

Cross reference

Mechanism of failure

ion

11%
—

type
and in
ly be

ave

ith

Problems arise when the use of a generic actually makes the code harder to understand during review and

maintenance, by not providing consistent behaviour.

In most cases, the generic definition will have to make assumptions about the types it can legally be instantiated

with. For example, a sort function requires that the elements to be sorted can be copied and compared. If these

assumptions are not met, the result is likely to be a compiler error. For example if the sort function is instantiated

with a user defined type that doesn’t have a relational operator. Where ‘misuse’ of a generic leads to a compiler

error, this can be regarded as a development issue, and not a software vulnerability.

54

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

Confusion, and hence potential vulnerability, can arise where the instantiated code is apparently illegal, but

doesn’t result in a compiler error. For example, a generic class defines a set of members, a subset of which rely on

a particular property of the instantiation type (such as a generic container class with a sort member function, only

the sort function relies on the instantiating type having a defined relational operator). In some languages, such as

C++, if the generic is instantiated with a type that doesn’t meet all the requirements but the program never

subsequently makes use of the subset of members that rely on the property of the instantiating type, the code

will compile and execute (for example, the generic container is instantiated with a user defined class that doesn’t

define

relational operator, but the program never calls the sort member of this instantiation). When th

o code is

review

The pr
langua

Similan
thanu
generi
langua
For ex3
sorting

instantfiation is not an issue. Again, for C++, there are some irregularities in the semantics of arrays and p

that ca
cases,

6.27.4 Applicable language characteristics

This vy

6.27.5

Softwa

ed the generic class will appear to reference a member of the instantiating type that doesn’t exist

bblem as described in the two prior paragraphs can be reduced by a language feature (suchas the
be feature being designed by the C++ committee).

confusion can arise if the language permits specific elements of a generic to be explicitly defined,
ing the common code, so that behaviour is not consistent for all instantiatiohs:For example, for t
container class, the sort member normally sorts the elements of the contajner into ascending ord
bes such as C++, a ‘special case’ can be created for the instantiation of'thée generic with a particula
mple, the sort member for a ‘float’ container may be explicitly defined to provide different behav
the elements into descending order. Specialization that doesn’t affect the apparent behaviour of

n lead to the generic having different behaviour for différent, but apparently very similar, types. In]
bpecialization can be used to enforce consistent behaviour.

Inerability is intended to be applicable tolanguages with the following characteristics:

Languages that permit definitionsof objects or functions to be parameterized by type, for later
instantiation with specific types, such as:

0 Templatesin C++

0 Generics in Ada, Java.

Avoiding the yvalnerability or mitigating its effects
re developersican avoid the vulnerability or mitigate its ill effects in the following ways:

Document the properties of an instantiating type necessary for a generic to be valid.
If an-instantiating type has the required properties, the whole of the generic should be ensured {

concepts

rather
he same
er.In

r type.
our, say
the
binters
such

o be

\/:IirI, whether :rhmlly usedinthe program or not

Preferably avoid, but at least carefully document, any ‘special cases’ where a generic is instantiated with

a specific type doesn’t behave as it does for other types.

6.27.6 Implications for standardization

In future standardization activities, the following items should be considered:

ISO/IEC 2010 — All rights reserved

55

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

e language specifiers should standardize on a common, uniform terminology to describe

generics/templates so that programmers experienced in one language can reliably learn and refer to the

type system of another language that has the same concept, but with a different name.

e lLanguage specifiers should design generics in such a way that any attempt to instantiate a generic with

constructs that do not provide the required capabilities results in a compile-time error.
e Language specifiers should provide an assertion mechanism for checking properties at run-time, fo
properties that cannot be checked at compile time.. It should be possible to inhibit assertion check

fficienc\Lis-a concern
14

r those
ing if

6.28 Inheritance [RIP]

6.28.1 DPescription of application vulnerability

Inheritarjce, the ability to create enhanced and/or restricted object classes based.onlexisting object

classes ¢an introduce a number of vulnerabilities, both inadvertent and maliciotis: Because Inheri
allows the overriding of methods of the parent class and because object oriented systems are desi

to separgte and encapsulate code and data, it can be difficult to determine‘where in the hierarchy g

invoked method is actually defined. Also, since an overriding method. does not need to call the me
in the parent class that has been overridden, essential initialization and manipulation of class data
be bypassed. This can be especially dangerous during constructor'and destructor methods.

Languades that allow multiple inheritance add additional complexities to the resolution of method
invocatigns. Different object brokerage systems may reselve the method identity to different classq
based ofi how the inheritance tree is traversed.

6.28.2 (ross reference

JSF AV Ryles: 86 to 97
MISRA C4+ 2008: 0-1-12, 8-3-1, 10-1-1 to 16:33, and 10-3-1 to 10-3-3
Ada Quaility and Style Guide: 9 (complete clause)

6.28.3 Mechanism of failure

The use df inheritance candead to an exploitable application vulnerability or negatively impact system safet
several ways:

e Ekecution(of)malicious redefinitions, this can occur through the insertion of a class into the class hig

—+

at overrides commonly called methods in the parent classes.
. ccidental redefinition, where a method is defined that inadvertently overrides a method that has 3

ance
jned
n
hod
mnay

v in

rarchy

Iready

been defined in a parent class.

e Accidental failure of redefinition, when a method is incorrectly named or the parameters are not defined

properly, and thus does not override a method in a parent class.

e Breaking of class invariants, this can be caused by redefining methods that initialize or validate class data

without including that initialization or validation in the overriding methods.

These vulnerabilities can increase dramatically as the complexity of the hierarchy increases, especially in the use

of multiple inheritance.

56 © 1SO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

6.28.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
e Llanguages that allow single and multiple inheritances.

6.28.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e | Avoid the use of multiple inheritance whenever possible.
e | Provide complete documentation of all encapsulated data, and how each method affects that data for
each object in the hierarchy.
e | Inherit only from trusted sources, and, whenever possible, check the version of the.parent classes during
compilation and/or initialization.

e | Provide a method that provides versioning information for each class.
6.28.4 Implications for standardization
In futufe standardization activities, the following items should be considéered:

e | Language specification should include the definition of acommon versioning method.
e | Compilers should provide an option to report the class in' which a resolved method resides.
e | Runtime environments should provide a trace of all;runtime method resolutions.

6.29 | Initialization of Variables [LAV]

6.29.1 Description of application vulnerability

Reading a variable that has not been assighed a value appropriate to its type can cause unpredictable exg¢cution in
the blgck that uses the value of the vatiable, and has the potential to export bad values to callers, or cauge out-of-
bound$ memory accesses.

Uninitiplized variable usageis-frequently not detected until after testing and often when the code in question is
deliverfed and in use, because happenstance will provide variables with adequate values (such as default data
settings or accidental left-over values) until some other change exposes the defect.

Variables that ake declared during module construction (by a class constructor, instantiation, or elaboration) may
have afternate‘paths that can read values before they are set. This can happen in straight sequential cod¢ but is
more grevalent when concurrency or co-routines are present, with the same impacts described above.

Another vulnerability occurs when compound objects are initialized incompletely, as can happen when objects
are incrementally built, or fields are added under maintenance.

When possible and supported by the language, whole-structure initialization is preferable to field-by-field
initialization statements, and named association is preferable to positional, as it facilitates human review and is
less susceptible to failures under maintenance. For classes, the declaration and initialization may occur in

ISO/IEC 2010 - All rights reserved 57

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

separate modules. In such cases it must be possible to show that every field that needs an initial value receives

that value, and to document ones that do not require initial values.

6.29.2 Cross reference

CWE:
457.

Use of Uninitialized Variable

JSF AV Rules: 71, 143, and 147

MISRA C
CERT C gu
MISRA C+
Ada Quai

6.29.3

Uninitiali
could cay
calculatig

There is 3
hardware
and writd

such a type is an access to a subprogram with a plausible (butwrong) value, then either a bad instruction tr

may occu
behaviou

Uninitiali

situationg.

6.29.4

This vulng

[]
-

6.29.5

Software

o T

0047971, 9.2, and 9-3
idelines: DCL14-C and EXP33-C
+2008: 8-5-1

ity and Style Guide: 5.9.6

Mechanism of failure

ed objects may have illegal values, legal but wrong values, or legal and dangerous values. Wrong
se unbounded branches in conditionals or unbounded loop executionsy/orcould simply cause wro
ns and results.

special case of pointers or access types. When such a type contains null values, a bound violation
exception can result. When such a type contains plausible but meaningless values, random data
s can collect erroneous data or can destroy data that is.in use by another part of the program; wh

r or a transfer to an unknown code fragment can*gecur. All of these scenarios can result in undefin
.

ed variables are difficult to identify anduse for attackers, but can be arbitrarily dangerous in safef

Applicable language characteristics

brability description is intended to be applicable to languages with the following characteristics:
hnguages that permitivariables to be read before they are assigned.

Avoiding thevulnerability or mitigating its effects

develapers can avoid the vulnerability or mitigate its ill effects in the following ways:

he.géneral problem of showing that all objects are initialized is intractable; hence developers must

carefully structure programs to show that all variables are set before first read on every path throughout

the subprogram. Where objects are visible from many modules, it is difficult to determine where the first

read occurs, and identify a module that must set the value before that read. When concurrency,

interrupts and coroutines are present, it becomes especially imperative to identify where early

initialization occurs and to show that the correct order is set via program structure, not by timing, OS

p

recedence, or chance.

e The simplest method is to initialize each object at elaboration time, or immediately after subprogram

execution commences and before any branches. If the subprogram must commence with conditional

58

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

statements, then the programmer is responsible to show that every variable declared and not initialized

earlier is initialized on each branch.

Applications can consider defining or reserving fields or portions of the object to only be set when fully

initialized.

It should be possible to use static analysis tools to show that all objects are set before use in certain

specific cases, but as the general problem is intractable, programmers should keep initialization
algorithms simple so that they can be analyzed.

6.29.6

In futu

6.30

6.30.1 Description ofapplication vulnerability

Wrap-
minim
very sf

\When Hnrl:ring and inifi:“ving the nhjor‘i’ fngnfhnr, fthe |:ng||:go does not anlliv‘ﬂ thatthe co

statically verify that the declarative structure and the initialization structure match, use stati¢ an
tools to help detect any mismatches.

When setting compound objects, if the language provides mechanisms to set all compohents tog
those in preference to a sequence of initializations as this helps coverage analysis; otherwise use
perform such coverage analysis and document the initialization. Do not perform partial initializat
unless there is no choice, and document any deviations from 100% initialization.

Where default assignments of multiple components are performed, explicit declaration of the co|
names and/or ranges helps static analysis and identification of compenent changes during maint
Some languages have named assignments that can be used to build.reviewable assignment struc
that can be analyzed by the language processor for completeness. Languages with positional not
only can use comments and secondary tools to help show correct assignment.

Implications for standardization
re standardization activities, the following items should be considered:

Some languages have ways to determine if modules and regions are elaborated and initialized an
raise exceptions if this does not occur.Languages that do not could consider adding such capabil
Languages could consider setting aside fields in all objects to identify if initialization has occurred
especially for security and safety domains.

Languages that do not support whole-object initialization could consider adding this capability.

Wrap-around Error [XYY]

round errofs can occur whenever a value is incremented past the maximum or decremented past
Im value“representable in its type and if so specified by the language semantics "wraps around" to
hall, negative, or undefined value. Using shift operations as a surrogate for multiply or divide may

piler
lysis

ether, use
tools that
ons

mponent
bnance.
tures
ation

d to
ties.

the
either a
produce

a simil

6.30.2

CWE:

Cross reference

128. Wrap-around Error

JSF AV
MISRA

Rules: 164 and 15
C2004:10.1to0 10.6,12.8and 12.11

ISO/IEC 2010 — All rights reserved

59

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

MISRA C++ 2008: 2-13-3, 5-0-3 to 5-0-10, and 5-19-1
CERT C guidelines: INT30-C, INT32-C, and INT34-C

6.30.3 Mechanism of failure

Due to how arithmetic is performed by computers, if a variable is incremented past the maximum value
representable in its type, the system may fail to provide an overflow indication to the program. One of the most
common processor behaviour is to “wrap” to a very large negative value, or set a condition flag for overflow or

o o FaN) 1 . i | 1
underflo ;orsaturateat tne rargestrepresentanie varue:

Shift opefations may also produce values that cannot be easily predicted as a result of the different
represenfations of negative integers on various hardware, and, when treating signed quantities, of the diffdrences
in behavipur between logical shifts and arithmetic shifts (the particular effect of filling with thé sign bit).

Wrap-ardund often generates an unexpected negative value; this unexpected value maycause a loop to coptinue
for a longtime (because the termination condition requires a value greater than some“positive value) or anjarray
bounds v|olation. A wrap-around can sometimes trigger buffer overflows that can'be used to execute arbitrary

code.

6.30.4 Applicable language characteristics

This vulngrability description is intended to be applicable to languagés with the following characteristics:

[]
-

hnguages that do not trigger an exception condition\when a wrap-around error occurs.

[]
-

hnguages that do not fully specify the distinction between arithmetic and logical shifts.
6.30.5 Avoiding the vulnerability or mitigating its effects
Software|developers can avoid the vulnerability-or mitigate its ill effects in the following ways:

etermine applicable upper and-lower bounds for the range of all variables and use language mechpnisms
I static analysis to determine,that values are confined to the proper range.

D
0

e Analyze the software using static analysis looking for unexpected consequences of arithmetic opergtions.
Avoid using shift operations as a surrogate for multiplication and division. Most compilers will use t{he
c

brrect operation inthe appropriate fashion when it is applicable.
6.30.6 [mplicatiens for standardization

In future ptapdardization activities, the following items should be considered:

e Llanguage standards developers should consider providing facilities to specify either an error, a saturated
value, or a modulo result when numeric overflow occurs.

6.31 Sign Extension Error [XZI]
6.31.1 Description of application vulnerability

Extending a signed variable that holds a negative value may produce an incorrect result.

60 © 1SO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

6.31.2

CWE:

ISO/IEC TR 24772:2010(E)

Cross reference

194. Incorrect Sign Extension

MISRA

C++ 2008: 5-0-4

CERT C guidelines: INT13-C

6.31.3

Mechanism of failure

Conve
extens
produg
signed
overflg
tested

6.31.4

This vy

6.31.5

Softwa

6.31.6

In futu

ting a signed data type to a larger data type or pointer can cause unexpected behaviour due to'th¢

on of the sign bit. A negative data element that is extended with an unsigned extension algarithn
e an incorrect result. For instance, this can occur when a signed character is convertedto,a type s
integer (32-bit) is converted to an integer type long (64-bit). Sign extension errors can lead to buf
ws and other memory based problems. This can occur unexpectedly when movihg ;software desig
on a 32-bit architecture to a 64-bit architecture computer.

Applicable language characteristics
Inerability description is intended to be applicable to languages with-the following characteristics:

Languages that are weakly typed due to their lack of enforcément of type classifications and inte
Languages that explicitly or implicitly allow applying unsSighed extension operations to signed ent
vice-versa.

Avoiding the vulnerability or mitigating its effects
re developers can avoid the vulnerability.or mitigate its ill effects in the following ways:

Use a sign extension library, standard function, or appropriate language-specific coding methods
extend signed values.

Use static analysis tools to.-help locate situations in which the conversion of variables might have
unintended consequences:

Implications for standardization
re standardization activities, the following items should be considered:

Language’definitions should define implicit and explicit conversions in a way that prevents altera
the\mathematical value beyond traditional rounding rules.

n will
hort or a
fer

ned and

ractions.
ities or

tion of

6.32

Operator Precedence/Order of Evaluation [JCW]

6.32.1 Description of application vulnerability

Each language provides rules of precedence and associativity, for each expression that operands bind to which

operators. These rules are also known as “grouping” or “binding”.

ISO/IEC 2010 — All rights reserved

61

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

Experience and experimental evidence shows that developers can have incorrect beliefs about the relative

precedence of many binary operators. See, Developer beliefs about binary operator precedence. C Vu, 18(4):14-
21, August 2006

6.32.2

JSFAVR

Cross reference

ules: 204 and 213

MISRA C 2004: 12.1, 12.2, 12.5, 12.6, 13.2, 19.10, 19.12, and 19.13

MISRA CHF200874-5-1, 4-5-2, 4-5-3, 5-0-1, 5-0-2, 5-2-1, 5-3-1, 16-0-6, 16-3-1, and 16-3-2
CERT C gyidelines: EXPOO-C
Ada Quaility and Style Guide: 7.1.8 and 7.1.9

6.32.3

In Cand

programmer having similar precedence to arithmetic operations, so just as one might correctly write “X —
0” (“X minus one is equal to zero”), a programmer might erroneously write “X &~ 1" == 0”, mentally thin
anded-with 1 is equal to zero”, whereas the operator precedence rules of C and,C++ actually bind the expre
as “comppte 1==0, producing ‘false’ interpreted as zero, then bitwise-and-the result with X”, producing (a
constant) zero, contrary to the programmer’s intent.

Exampleq from an opposite extreme can be found in programs written in APL, which is noteworthy for the

absence
produce

6.32.4

This vulngrability description is intended to be applicable to languages with the following characteristics:

6.32.5

Software|developers can avoid the vulnerability or mitigate its ill effects in the following ways:

6.31.6

Mechanism of failure

[++, the bitwise operators (bitwise logical and bitwise shift) are sometimes thalght of by the

of any distinctions of precedence. One commonly madé mistake is to write “a * b + c”, intend
atimes b plus ¢”, whereas APL’s uniform right-to<left associativity produces “b plus c, times a”.

Applicable language characteristics

Languages whose precedence and associativity rules are sufficiently complex that developers do no
rémember them.

Avoiding the vulnerability or mitigating its effects

>

dopt programming guidelines (preferably augmented by static analysis). For example, consider th
mized abeve from JSF C++ [15], CERT C [11] or MISRA C [12].
se parentheses around binary operator combinations that are known to be a source of error (for

ing “X

ssion

ing to

[

e rules

ekample, mixed arithmetic/bitwise and bitwise/relational operator combinations).

Break up complex expressions and use temporary variables to make the order clearer.

Implications for standardization

In future standardization activities, the following items should be considered:

62

Language definitions should avoid providing precedence or a particular associativity for operators that are
not typically ordered with respect to one another in arithmetic, and instead require full parenthesization

to avoid misinterpretation.

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

6.33 Side-effects and Order of Evaluation [SAM]
6.33.1 Description of application vulnerability

Some programming languages allow subexpressions to cause side-effects (such as assignment, increment, or
decrement). For example, some programming languages permit such side-effects, and if, within one expression
(suchas “1 = v[i++]”), two or more side-effects modify the same object, undefined behaviour results.

Some lpmiguagesattowsubexpressionstobeevatuated-mamrunspecifiedordering, oreverrremoved duri
optimigation. If these subexpressions contain side-effects, then the value of the full expression can be'dgpendent
upon the order of evaluation. Furthermore, the objects that are modified by the side-effects can‘receive|values

that are dependent upon the order of evaluation.

If a prggram contains these unspecified or undefined behaviours, testing the program afidseeing that it yields the
expected results may give the false impression that the expression will always yield the-expected result.

6.33.2 Cross reference

JSF AV|Rules: 157, 158, 166, 204, 204.1, and 213
MISRA|C 2004: 12.1-12.5

MISRA|C++ 2008: 5-0-1

CERT (guidelines: EXP10-C, EXP30-C

Ada Quiaility and Style Guide: 7.1.8 and 7.1.9

6.33.3| Mechanism of failure

When pubexpressions with side effects are used-Within an expression, the unspecified order of evaluationf can
result in a program producing different results\on different platforms, or even at different times on the same
platform. For example, consider

al= f(b) + g(b);

where[F and g both modify b If F(b) is evaluated first, then the b used as a parameter to g(b) may bk a
differept value than if g(B))is performed first. Likewise, if g(b) is performed first, F¥(b) may be called|with a
differept value of b.

Other ¢xamplesof unspecified order, or even undefined behaviour, can be manifested, such as

al=f() + i++;

or
afi++] = b[i++];

Parentheses around expressions can assist in removing ambiguity about grouping, but the issues regarding side-
effects and order of evaluation are not changed by the presence of parentheses; consider

J = i+ * i+t

© ISO/IEC 2010 — Al rights reserved 63

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

where even if parentheses are placed around the i++ subexpressions, undefined behaviour still remains. (All
examples use the syntax of C or Java for brevity; the effects can be created in any language that allows functions
with side-effects in the places where C allows the increment operations.)

The unpredictable nature of the calculation means that the program cannot be tested adequately to any degree
of confidence. A knowledgeable attacker can take advantage of this characteristic to manipulate data values
triggering execution that was not anticipated by the developer.

6.33.4 Applicabletanguagecharacteristics
This vulngrability description is intended to be applicable to languages with the following characteristics:

e Lhnguages that permit expressions to contain subexpressions with side effects.
e Lhnguages whose subexpressions are computed in an unspecified ordering.

6.33.5 Avoiding the vulnerability or mitigating its effects
Software|developers can avoid the vulnerability or mitigate its ill effects in the folowing ways:

lake use of one or more programming guidelines which (a) prohibifthese unspecified or undefined
ehaviours, and (b) can be enforced by static analysis. (See JSF-AV and MISRA rules in Cross refererjce
ause [SAM])

pep expressions simple. Complicated code is prone to.error and difficult to maintain.

D 0 o =2

6.33.6 [mplications for standardization
In future ptandardization activities, the following items-should be considered:

developing new or revised languages,give consideration to language features that will eliminate jor

°
3 =

itigate this vulnerability, such as pure functions.
6.34 Likely Incorrect Expression [KOA]
6.34.1 Description of application vulnerability

Certain ekpressions are symptomatic of what is likely to be a mistake made by the programmer. The statement is
not wronp, but it is unlikely to be right. The statement may have no effect and effectively is a null statement or
may intrdduce an\unintended side-effect. A common example is the use of = in an 1T expression in C wher¢ the

programmer meant to do an equality test using the == operator. Other easily confused operators in C are Jhe
mmer

logical operators such as && for the bitwise operator &, or vice versa. It is legal and possible that the progr

intended to do an assignment within the 1 F expression, but due to this being a common error, a programmer
doing so would be using a poor programming practice. A less likely occurrence, but still possible is the
substitution of == for = in what is supposed to be an assignment statement, but which effectively becomes a null
statement. These mistakes may survive testing only to manifest themselves in deployed code where they may be
maliciously exploited.

64 © ISO/IEC 2010 - All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

6.34.2 Cross reference

CWE:

480. Use of Incorrect Operator

481. Assigning instead of Comparing

482. Comparing instead of Assigning

570. Expression is Always False

571. Expression is Always True
JSF AV|[Rules: 160 and 166
MISRA|C 2004: 12.3, 12.4, 12.13, 13.1, 13.7, and 14.2
MISRA| C++ 2008: 0-1-9, 5-0-1, 6-2-1, and 6-5-2
CERT guidelines: MSC02-C and MSC03-C

6.34.3] Mechanism of failure

Some ¢f the failures are simply a case of programmer carelessness. Substitution of = instead of == in a Boolean
test is gasy to do and most C and C++ programmers have made this mistake at©ne time or another. Othér
instanges can be the result of intricacies of the language definition that specifies what part of an expression must
be evaluated. For instance, having an assignment expression in a Booléan'statement is likely making an
assumption that the complete expression will be executed in all casés. However, this is not always the cdse as

sometimes the truth-value of the Boolean expression can be determined after only executing some portipn of the
exprespion. For instance:

if ((@a==D0b) | (c = (d-1)))

There {s no guarantee which of the two subexpressions (a == b) or (c=(d-1)) will be executed fifst.
Should (a==b) be determined to be true, thenthere is no need for the subexpression (c=(d-1)) to be
executed and as such, the assignment (c=(d-1)) will not occur.

Embedding expressions in other expressions can yield unexpected results. Increment and decrement opérators
(++ and —-) can also yield unexpected results when mixed into a complex expression.

Incorrgctly calculated results'can lead to a wide variety of erroneous program execution
6.34.4 Applicable language characteristics
This vylnerability-description is intended to be applicable to languages with the following characteristics:

o | AlFlanguages are susceptible to likely incorrect expressions.

6.34.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Simplify expressions.
e Do not use assignment expressions as function parameters. Sometimes the assignment may not be
executed as expected. Instead, perform the assignment before the function call.

ISO/IEC 2010 — All rights reserved 65

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

e Do not perform assignments within a Boolean expression. This is likely unintended, but if not, then move

the assignment outside of the Boolean expression for clarity and robustness.

e On some rare occasions, some statements intentionally do not have side effects and do not cause control

fl

ow to change. These should be annotated through comments and made obvious that they are

intentionally no-ops with a stated reason. If possible, such reliance on null statements should be avoided.

In general, except for those rare instances, all statements should either have a side effect or cause control

fl

ow to change.

6.34.6

In future
L
s
t
t
L
L
L

—

6.35
6.35.1

Dead and
can neve
called), o
can neve

Dead and
provide a

Also cove
6.35.2

CWE:

mplications for standardization
tandardization activities, the following items should be considered:

hnguages should consider providing warnings for statements that are unlikely to be, fight such as
atements without side effects. A null (no-op) statement may need to be added to the language fq

]:ose rare instances where an intentional null statement is needed. Having anull'statement as par

e language will reduce confusion as to why a statement with no side effetts is present in code.
hnguages should consider not allowing assignments used as function pafameters.

hnguages should consider not allowing assignments within a Boolean expression.

hnguage definitions should avoid situations where easily confusedsymbols (such as = and ==, or

va because it does not normally return a boolean valugt
Dead and Deactivated Code [XYQ]

Description of application vulnerability

Deactivated code (the distinction is addressed in 6.35.3) is code that exists in the executable, but
be executed, either because there(is no call path that leads to it (for example, a function that is n
r the path is semantically infeasible (for example, its execution depends on the state of a condition
be achieved).

Deactivated code is undesirable because it indicates the possibility of a coding error and because
"jlump" target for-an-intrusion.

red in this yulnerability is code which is believed to be dead, but which is inadvertently executed.

Cross reference

=

of

and

z, or '=and /=) are legal in the same context. For example; =\is not generally legal in an i F statenjent in

which
bver
al that

it may

561.
570.
571.

Dead Code
Expression is Always False
Expression is Always True

JSF AV Rules: 127 and 186
MISRA C 2004: 2.4 and 14.1

MISRA C++ 2008: 0-1-1to 0-1-10, 2-7-2, and 2-7-3

CERT C guidelines: MSCO07-C and MSC12-C

DO-178B/C

66 © 1SO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 2477

6.35.3 Mechanism of failure

DO-17

Dead dode is code that exists in an application, but which can never be executed, either because there is
path tq the code (for example, a function that is never called) or because the execution‘path to the code

seman

fun_1 is dead code, as only Fun_a can ever be executed.

The pr

indicatjon that the developer believed it to be necessary,but some error means it will never be executed
there 4 legitimate reason for its presence, for example:

Such ¢

There

constriicts that use compléex name resolution strategies. The developer may believe that some code is no
to be Ysed (deactivated), but its existence in the program means that it appears in the namespace, and n
selectdd as the best match for some use that was intended to be of an overloading function. That is, alth

develo

6.35.4__Applicable language characteristics
. . rr D D

8B defines Dead and Deactivated code as:

Dead code — Executable object code (or data) which... cannot be executed (code) or used (data) i

2:2010(E)

nan

operational configuration of the target computer environment and is not traceable to a system or

software requirement.

Deactivated code — Executable object code (or data) which by design is either (a) not intended to be

executed (code) or used (data), Tor example, a part of a previously developed sotftware compone

example, code that is enabled by a hardware pin selection or software programmed options:

Lically infeasible, as in
integer 1 = 0;
if (1 ==0)

then fun_a();
else fun_b();

bsence of dead code is not in itself an error, but begs.the question why is it there? Is its presence a

Defensive code, only executed as the xésult of a hardware failure.
Code that is part of a library not.required in this application.
Diagnostic code not executed'in-the operational environment.

bde may be referred to as “deactivated”. That is, dead code that is there by intent.

s a secondary consideration for dead code in languages that permit overloading of functions and @

per beljeves it is never going to be used, in practice it is used in preference to the intended functio

ht, or (b)

is only executed (code) or used (data) in certain configurations of the target computer environment, for

no call

is

? Oris

ther

t going
ay be
bugh the
n.

This vulnerability description is intended to be applicable to languages with the following characteristics:

Languages that allow code to exist in the executable that can never be executed.

6.35.5 Avoiding the vulnerability or mitigating its effects

Softwa

re developers can avoid the vulnerability or mitigate its ill effects in the following ways:

ISO/IEC 2010 — All rights reserved

67

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

e The developer should endeavour to remove, as a first resort and as far as practical, dead code from an

application.

e When a developer identifies code that is dead because a conditional always evaluates to the same value,
this could be indicative of an earlier bug and additional testing may be needed to ascertain why the same

value is occurring.

e The developer should identify any dead code in the application, and provide a justification (if only to

themselves) as to why it is there.

o T

6.35.6
[Non

6.36

6.36.1

Many prg
alternatiy
introduce

flows frofn one alternative to another.

6.36.2

JSF AV RY
MISRA C
MISRA C+
CERT C g\
Ada Quai

6.36.3

The fund
treated c

ized as

e developer should apply standard branch coverage measurement tools and ensure by 100%’coverage

at all branches are neither dead nor deactivated
mplications for standardization

e]
Switch Statements and Static Analysis [CLL]

Description of application vulnerability

e control flows based upon the evaluated result of antekpression. The use of such constructs may

Cross reference

les: 148, 193, 194, 195, and 196
P004: 15.2, 15.3, and 15.5

+2008: 6-4-3, 6-4-5, 6-4-6, and-6-4-8
idelines: MSC01-C

ity and Style Guide: 5:6.1 and 5.6.10

Mechanism of failure

brrectly.

6.36.4

Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

gramming languages provide a construct, such as a switeh statement, that chooses among multfiple

application vulnerabilities if not all possible cases appear within the switch or if control unexpectgdly

imental challenge when using a switch statement is to make sure that all possible cases are, in fact,

¢ Contain a construct, such as a switch statement, that provides a selection among alternative control

fl

ows based on the evaluation of an expression.

6.36.5 Avoiding the vulnerability or mitigating its effects

Software

68

developers can avoid the vulnerability or mitigate its ill effects in the following ways:

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

6.36.6

In futu

6.37

6.37.1 Description of application vulnerability

ISO/IEC TR 24772:2010(E)

Switch on an expression that has a small number of potential values that can be statically enumerated. In
languages that provide them, a variable of an enumerated type is to be preferred because its possible set
of values is known statically and is small in number (as compared, for example, to the value set of an
integer variable). In languages that don’t provide enumerated types, a tightly constrained integer sub-
type might be a good alternative. Where it is practical to statically enumerate the switched type, it is
preferable to omit the default case, because the static analysis is simplified and because maintainers can
better understand the intent of the original programmer. When one must switch on some other form of
type, it is necessary to have a default case, preferably to be regarded as a serious error condition.

L w . ”
reviewers and maintainers to distinguish whether the construct was intended or is an error of(Omission.
(Using multiple labels on individual alternatives is not a violation of this recommendation, thotgh.) In
cases where flow-through is necessary and intended, an explicitly coded branch may be preferabfle to
clearly mark the intent. Providing comments regarding intention can be helpful to reviewers and
maintainers.

Perform static analysis to determine if all cases are, in fact, covered by the code. (Note that the Use of a
default case can hamper the effectiveness of static analysis since the tool canfiot determine if onpitted

alternatives were or were not intended for default treatment.)
Other means of mitigation include manual review, bounds testing, toélanalysis, verification techhiques,
and proofs of correctness.

Implications for standardization
re standardization activities, the following items should e ‘considered:

Language specifications could require compilers to~ensure that a complete set of alternatives is pgrovided
in cases where the value set of the switch variable’can be statically determined.

Demarcation of Control Flow {EO]]

Some programming languages explicitlyrmark the end of an 1 ¥ statement or a loop, whereas other languages

mark d
progra

6.37.2

JSF AV
MISRA
MISRA|
Hatton

nly the end of a block of statements. Languages of the latter category are prone to oversights by the
mmer, causing unintended sequences of control flow.

Cross reference

Rules: 59 and-192

C2004~14:8,14.9, 14.10, and 19.5

C++008: 6-3-1, 6-4-1, 6-4-2, 6-4-3, 6-4-8, 6-5-1, 6-5-6, 6-6-1 to 6-6-5, and16-0-2
18:Control flow — 1 F structure

Ada Quaility and Style Guide: 3, 5.6.1 through 5.6.10

6.37.3

Mechanism of failure

Programmers may rely on indentation to determine inclusion of statements within constructs. Testing of the

softwa

re may not reveal that statements thought to be included in an i F-then, if-then-else, or loops that

are not in reality a part of the 1 statement. Moreover, for a nested 1 F-then-else statement the

ISO/IEC 2010 — All rights reserved 69

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

programmer may be confused about which 1 ¥ statement controls the ellse part directly. This can lead to
unexpected results.

6.37.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

e Languages that contain loops and conditional statements that are not explicitly terminated by an “end”

Cr\v\rfvn et
ToTroee

6.37.5 Avoiding the vulnerability or mitigating its effects
Software|developers can avoid the vulnerability or mitigate its ill effects in the following ways;

. dopt a convention for marking the closing of a construct that can be checked by a tool, to ensure that
program structure is apparent.

. dopt programming guidelines (preferably augmented by static analysis). For example, consider the rules
itlemized above from JSF AV, MISRA C, MISRA C++ or Hatton.

. ther means of assurance might include proofs of correctness, analysis\with tools, verification
techniques, or other methods.

e Pretty-printers and syntax-aware editors may be helpful in finding such problems, but sometimes d|sguise
them.

e Include a final else statement at the end of i f-...-e Ise=a T constructs to avoid confusion.

¢ Always enclose the body of statements of an I f, whi '€, Tor, or other statements potentially

introducing a block of code in braces (“{}”) or other'demarcation indicators appropriate to the language

uked.

6.37.6 [mplications for standardization
In future ptandardization activities, the following items should be considered:

e Specifiers of languages should.consider adding a mode that strictly enforces compound conditionalfand

goping constructs with explicit termination, such as “end if” or a closing bracket.

L]
%)

becifiers of languages might consider explicit termination of loops and conditional statements.

[]
wn

pecifiers might consider features to terminate named loops and conditionals and determine if the
ructure as named-matches the structure as inferred.

[%]

6.38 Loop Control Variables [TEX]

6.38.1 Description of application vulnerability

Many languages support a looping construct whose number of iterations is controlled by the value of a loop
control variable. Looping constructs provide a method of specifying an initial value for this loop control variable, a
test that terminates the loop and the quantity by which it should be decremented/incremented on each loop
iteration.

In some languages it is possible to modify the value of the loop control variable within the body of the loop.
Experience shows that such value modifications are sometimes overlooked by readers of the source code,

resulting in faults being introduced.

70 © ISO/IEC 2010 - All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

6.38.2

JSF AV
MISRA
MISRA

6.38.3

Reade

ISO/IEC TR 24772:2010(E)

Cross reference

Rule: 201
C 2004: 13.6
C++ 2008: 6-5-1 to 6-5-6

Mechanism of failure

s of saurce code often make. nccnmpf‘innc about what has beenwritten. A common :\ccumpfinn is that a

loop c¢
A read

and wijite (incorrect) code based on this assumption.

6.38.4 Applicable language characteristics

This vy

6.38.5

Softwa

6.38.6

In futu

6.39

6.39.1 Description of application vulnerability

ntrol variable is a constant since such variables are not usually modified in the body of the associdted loop.
br of the source may incorrectly assume that a loop control variable is not modified in the body of |its loop

Inerability description is intended to be applicable to languages with the following characteristics:
Languages that permit a loop control variable to be modified in the body of its associated loop.
Avoiding the vulnerability or mitigating its effects
re developers can avoid the vulnerability or mitigate its ill€ffects in the following ways:

Not modifying a loop control variable in the body of its associated loop body.
Some languages, such as C and C++ do not expligitly specify which of the variables appearing in alloop
header is the loop control variable. MISRA-C.[12] and MISRA C++ [16] have proposed algorithms for
deducing which, if any, of these variables s the loop control variable in the programming languages C and
C++ (these algorithms could also be applied to other languages that support a C-like for-loop).

Implications for standardization
re standardization activities, the following items should be considered:

Language designerstshould consider the addition of an identifier type for loop control that cannot be
modified by anything other than the loop control construct.

Off-by-one Error [XZH]

PO RVH- AR U R VS T S T- TR T~ RPN P S thaon 1 s d gl Th'
T T T T oY T T T tRe-cofrectvarde—I NIsS

A prog

usually arises from one of a number of situations where the bounds as understoo

OA—L PN re. 4 1
arttr aSCSart mrcoTTeCTTTT ot ac IS T 1o

o

by the developer differ from

the design, such as:

Confusion between the need for <and <=or > and >=in a test.

Confusion as to the index range of an algorithm, such as: beginning an algorithm at 1 when the underlying
structure is indexed from 0; beginning an algorithm at 0 when the underlying structure is indexed from 1
(or some other start point); or using the length of a structure as its bound instead of the sentinel values.

ISO/IEC 2010 — All rights reserved 71

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

e Failing to allow for storage of a sentinel value, such as the NULL string terminator that is used in the C

a

nd C++ programming languages.

These issues arise from mistakes in mapping the design into a particular language, in moving between languages

(such as between languages where all arrays start at 0 and other languages where arrays start at 1), and when

exchanging data between languages with different default array bounds.

The issue also can arise in algorithms where relationships exist between components, and the existence of a

bounds v

The exist
provide 3
channels

6.39.2

CWE:
193.

6.39.3

An off-by

[]
Q)

[]
Q)

foechanges the conaitions of the test.

pnce of this possible flaw can also be a serious security hole as it can permit someone to surreptiti
h unused location (such as 0 or the last element) that can be used for undocumented features or |

Cross reference

Off-by-one Error
Mechanism of failure
Lone error could lead to:

h out-of bounds access to an array (buffer overflow);

incomplete comparisons or calculation mistakes,

read from the wrong memory location, or
h incorrect conditional.

Such incgrrect accesses can cause cascading errors or references to illegal locations, resulting in potentially

unbound

bd behaviour.

Off-by-orle errors are not often exploitéd in attacks because they are difficult to identify and exploit externa

but the c

6.39.4

hscading errors and boundary-condition errors can be severe.

Applicable language characteristics

As this vdlnerability arises because of an algorithmic error by the developer, it can in principle arise in any

language

o T
e

however;-it is most likely to occur when:

busly
idden

Iy,

helanguage relies on the developer having implicit knowledge of structure start and end indices (flor

Xample, Knowing whether arrays start at U or 1 — or Indeed some other value).

e Where the language relies upon explicit bounds values to terminate variable length arrays.

6.39.5 Avoiding the vulnerability or mitigating its effects

Software

developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e A systematic development process, use of development/analysis tools and thorough testing are all
common ways of preventing errors, and in this case, off-by-one errors.

72

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

e Where references are being made to structure indices and the languages provide ways to specify the
whole structure or the starting and ending indices explicitly (for example., Ada provides xxx'First and
xxx'Last for each dimension), these should be used always. Where the language doesn't provide these,
constants can be declared and used in preference to numeric literals.

e Where the language doesn’t encapsulate variable length arrays, encapsulation should be provided
through library objects and a coding standard developed that requires such arrays to only be used via
those library objects, so the developer does not need to be explicitly concerned with managing bounds
values.

6.39.4 Implications for standardization
In futufe standardization activities, the following items should be considered:

e | Languages should provide encapsulations for arrays that:
0 Prevent the need for the developer to be concerned with explicit bounds values.
0 Provide the developer with symbolic access to the array start, end anditerators.

6.40 | Structured Programming [EWD]
6.40.1 Description of application vulnerability

Programs that have a convoluted control structure are likely to be more difficult to be human readable, l¢ss
undergtandable, harder to maintain, more difficult to modify,-harder to statically analyze, more difficult o match
the allgpcation and release of resources, and more likely to.be incorrect.

6.40.2 Cross reference

JSF AV|Rules: 20, 113, 189, 190, and 191

MISRA|C 2004: 14.4, 14.5, and 20.7

MISRA|C++ 2008: 6-6-1, 6-6-2, 6-6-3, and«17-0-5
CERT (guidelines: SIG32-C

Ada Quiaility and Style Guide: 3, 4, 5,4, 5.6, and 5.7

6.40.3 Mechanism of failure

Lack of structured programming can lead to:

e | Memory or resource leaks.
e | Error prone maintenance.
o | Désign that is difficult or impossible to validate.

e Source code that is difficult or impossible to statically analyze.
6.40.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

e languages that allow leaving a loop without consideration for the loop control.
e Languages that allow local jumps (goto statement).

ISO/IEC 2010 — All rights reserved 73

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

e Languages that allow non-local jumps (setjmp/longjmp in the C programming language).
e Languages that support multiple entry and exit points from a function, procedure, subroutine or method.

6.40.5 Avoiding the vulnerability or mitigating its effects

Use only those features of the programming language that enforce a logical structure on the program. The
program flow follows a simple hierarchical model that employs looping constructs such as for, repeat, do, and
while.

Software|developers can avoid the vulnerability or mitigate its ill effects in the following ways:

void using language features such as goto.
void using language features such as continue and break in the middle of loops.

A
A
e Avoid using language features that transfer control of the program flow via a jump-
Avoid multiple exit points to a function/procedure/method/subroutine.

A

void multiple entry points to a function/procedure/method/subroutine.
6.40.6 [mplications for standardization
In future ptandardization activities, the following items should be considered:

e Languages should support and favor structured programming through their constructs to the exten
pssible.

e

6.41 Passing Parameters and Return Values® [CS]]
6.41.1 Description of application vulnerability

Nearly every procedural language provides some method of process abstraction permitting decomposition pf the
flow of c@ntrol into routines, functions, subprograms, or methods. (For the purpose of this description, the term
subprogram will be used.) To have any-éffect on the computation, the subprogram must change data visiblg to
the calling program. It can do this by-changing the value of a non-local variable, changing the value of a
parametdr, or, in the case of afunction, providing a return value. Because different languages use different
mechanigdms with different.semantics for passing parameters, a programmer using an unfamiliar language may
obtain urlexpected results.

6.41.2 (ross reference

JSF AV Ryles? 246, 117, and 118

MISRA C ROB4: 16.1.16.2 16.3,16.4,16.5 16.6,16.7 and 16.9
MISRA C++ 2008: 0-3-2, 7-1-2, 8-4-1, 8-4-2, 8-4-3, and 8-4-4
CERT C guidelines: EXP12-C and DCL33-C

Ada Quaility and Style Guide: 5.2 and 8.3

6.41.3 Mechanism of failure

The mechanisms for parameter passing include: call by reference, call by copy, and call by name. The last is so
specialized and supported by so few programming languages that it will not be treated in this description.

74 © ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

In call by reference, the calling program passes the addresses of the arguments to the called subprogram. When
the subprogram references the corresponding formal parameter, it is actually sharing data with the calling
program. If the subprogram changes a formal parameter, then the corresponding actual argument is also
changed. If the actual argument is an expression or a constant, then the address of a temporary location is passed
to the subprogram; this may be an error in some languages.

In call by copy, the called subprogram does not share data with the calling program. Instead, formal parameters
act as local variables. Values are passed between the actual arguments and the formal parameters by copying.

Some languages may control changes to formal parameters based on labels such as in, out, or iNnout, [There
are three cases to consider: call by value for in parameters; call by result for out parameters andfunctipn return
values] and call by value-result for inout parameters. For call by value, the calling program evaluates the actual
arguments and copies the result to the corresponding formal parameters that are then treated as local variables
by thesubprogram. For call by result, the values of the locals corresponding to formal parameters are copied to
the cofresponding actual arguments. For call by value-result, the values are copied infrom the actual arguments
at the beginning of the subprogram's execution and back out to the actual arguments at its termination.

The obyvious disadvantage of call by copy is that extra copy operations are needéd and execution time is fequired
to produce the copies. Particularly if parameters represent sizable objects,such as large arrays, the cost ¢f call by
copy can be high. For this reason, many languages also provide the call by reference mechanism. The
disadv@ntage of call by reference is that the calling program cannot be assured that the subprogram hasn't
changdd data that was intended to be unchanged. For examplg, if an array is passed by reference to a
subprdgram intended to sum its elements, the subprogram.could also change the values of one or more g¢lements
of the prray. However, some languages enforce the subproegram's access to the shared data based on the labeling
of actyal arguments with modes—such as in, out;,etdinout or by constant pointers.

Anothé¢r problem with call by reference is unintended aliasing. It is possible that the address of one actud|
argument is the same as another actual argument or that two arguments overlap in storage. A subprogrgm,
assuming the two formal parameters to be distinct, may treat them inappropriately. For example, if one ¢odes a
subprdgram to swap two values using.the exclusive-or method, then a call to swap (X, X) will zero the Jalue of
X. Aliaing can also occur between.arguments and non-local objects. For example, if a subprogram modifjes a

non-lofal object as a side-effect of its execution, referencing that object by a formal parameter will result in

aliasing and, possibly, unintended results.

Some lpnguages provide only simple mechanisms for passing data to subprograms, leaving it to the progfammer
to synthesize agpropriate mechanisms. Often, the only available mechanism is to use call by copy to pass small
scalar yalues-or pointer values containing addresses of data structures. Of course, the latter amounts to dsing call
by refdreice with no checking by the language processor. In such cases, subprograms can pass back pointers to

anythi g wnatsoever, InCluding data that IS corrupted or absent.

Some languages use call by copy for small objects, such as scalars, and call by reference for large objects, such as
arrays. The choice of mechanism may even be implementation-defined. Because the two mechanisms produce
different results in the presence of aliasing, it is very important to avoid aliasing.

An additional problem may occur if the called subprogram fails to assign a value to a formal parameter that the
caller expects as an output from the subprogram. In the case of call by reference, the result may be an
uninitialized variable in the calling program. In the case of call by copy, the result may be that a legitimate

ISO/IEC 2010 - All rights reserved 75

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

initialization value provided by the caller is overwritten by an uninitialized value because the called program did
not make an assignment to the parameter. This error may be difficult to detect through review because the
failure to initialize is hidden in the subprogram.

An additional complication with subprograms occurs when one or more of the arguments are expressions. In such
cases, the evaluation of one argument might have side-effects that result in a change to the value of another or
unintended aliasing. Implementation choices regarding order of evaluation could affect the result of the
computation. This particular problem is described in Side-effects and Order of Evaluation clause [SAM].

6.41.4 Applicable language characteristics

This vulngrability description is intended to be applicable to languages with the following charactéristics:

[
-

hnguages that provide mechanisms for defining subprograms where the data passesbetween the falling
rogram and the subprogram via parameters and return values. This includes migthods in many popular

O T

bject-oriented languages.
6.41.5 Avoiding the vulnerability or mitigating its effects
Software|developers can avoid the vulnerability or mitigate its ill effects inthe following ways:

se available mechanisms to label parameters as constants\or with modes like In, out, or inout,

hen a choice of mechanisms is available, pass small simple objects using call by copy.

U
')
e \When a choice of mechanisms is available and the,computational cost of copying is tolerable, pass larger
opjects using call by copy.
When the choice of language or the computational cost of copying forbids using call by copy, then take
safeguards to prevent aliasing:
0 Minimize side-effects of subpregrams on non-local objects; when side-effects are coded, ersure
that the affected non-local’ebjects are not passed as parameters using call by reference.
0 To avoid unintentional dliasing, avoid using expressions or functions as actual arguments; irjstead

assign the result of thé ‘expression to a temporary local and pass the local.

12

0 Utilize tooling ohother forms of analysis to ensure that non-obvious instances of aliasing arg
absent.
0 Perform,reviews or analysis to determine that called subprograms fulfill their responsibilitigs to
assignvalues to all output parameters.

6.41.6 [mplications for standardization

In future ptandardization activities, the following items should be considered:

e Programming language specifications could provide labels—such as in, out, and inout—that control
the subprogram’s access to its formal parameters, and enforce the access.

76 © ISO/IEC 2010 - All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

6.42

ISO/IEC TR 2477

Dangling References to Stack Frames [DCM]

6.42.1 Description of application vulnerability

2:2010(E)

Many languages allow treating the address of a local variable as a value stored in other variables. Examples are
the application of the address operator in C or C++, or of the ‘Access or ‘Address attributes in Ada. In some
languages, this facility is also used to model the call-by-reference mechanism by passing the address of the actual
parameter by-value. An obvious safety requirement is that the stored address shall not be used after the lifetime

of the
and m

difficult to decide. This situation can be described as a “dangling reference to the stack”.

6.42.2 Cross reference

CWE:

562. Return of Stack Variable Address

JSF AV
MISRA
MISRA

CERT (guidelines: EXP35-C and DCL30-C
Ada Quaility and Style Guide: 7.6.7, 7.6.8, and 10.7.6

6.42.3

The co
variant
imposy
langua

st
ty
all
al

{

bmory may have been reused for a subsequent call. Therefore, the invalidity of the stored address

Rule: 173
C2004: 17.6 and 21.1
C++ 2008: 0-3-1, 7-5-1, 7-5-2, and 7-5-3

Mechanism of failure

hsequences of dangling references to the stack.€ome in two variants: a deterministically predictab
, which therefore can be exploited, and anlintermittent, non-deterministic variant, which is next t
ible to elicit during testing. The following'code sample illustrates the two variants; the behaviour i
be-specific:

'ruct s { .. };
pedef struct s array type[1000];
'ray_type* ptr;
‘ray_type* FQ)

struct s Arr{1000];

ptr = &AIrrS; // Risk of variant 1;
return—&Arr; // Risk of variant 2;

struct s secret;

ocal variable has expired. Technically, the stack frame, in which the local variable lived, has been gopped

is very

e
)
5 not

array_type~ ptrZ;
ptr2 = FQ;
secret = (ptr2)[10]; // Fault of variant 2

secret = (*ptr)[10]; // Fault of variant 1

The risk of variant 1 is the assignment of the address of Arr to a pointer variable that survives the lifetime of
Arr. The fault is the subsequent use of the dangling reference to the stack, which references memory since

altered by other calls and possibly validly owned by other routines. As part of a call-back, the fault allows

ISO/IEC 2010 — All rights reserved

77

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

systematic examination of portions of the stack contents without triggering an array-bounds-checking violation.

Thus, this vulnerability is easily exploitable. As a fault, the effects can be most astounding, as memory gets

corrupted by completely unrelated code portions. (A life-time check as part of pointer assignment can prevent the

risk. In many cases, such as the situations above, the check is statically decidable by a compiler. However, for the

general case, a dynamic check is needed to ensure that the copied pointer value lives no longer than the
designated object.)

The risk of variant 2 is an idiom “seen in the wild” to return the address of a local variable to avoid an expensive

copy of affunction result, as long as it is consumed before the next routine call occurs. The idiom is based-af
ill-founddd assumption that the stack will not be affected by anything until this next call is issued. The-assur
is false, hpwever, if an interrupt occurs and interrupt handling employs a strategy called “stack stealing”, th
using the|current stack to satisfy its memory requirements. Thus, the value of Arr can be ovexWritten befo
can be refrieved after the call on F. As this fault will only occur if the interrupt arrives after-the call has retu
but before the returned result is consumed, the fault is highly intermittent and next to impossible to re-cre
during tefting. Thus, it is unlikely to be exploitable, but also exceedingly hard to find by-testing. It can begin
occur aft¢r a completely unrelated interrupt handler has been coded or altered.Qnly static analysis can relg
easily deflect the danger (unless the code combines it with risks of variant 1)..Some compilers issue warning|
this situation; such warnings need to be heeded, and some forms of static‘@nalysis are effective in identifyin
problems.

6.42.4 Applicable language characteristics
This vulngrability description is intended to be applicable to.Janguages with the following characteristics:

The address of a local entity (or formal paraméter) of a routine can be obtained and stored in a vari
of can be returned by this routine as a result:

No check is made that the lifetime of the'variable receiving the address is no larger than the lifetim
the designated entity.

6.42.5 Avoiding the vulnerability.or mitigating its effects
Software|developers can avoidithe vulnerability or mitigate its ill effects in the following ways:

0 not use the address of locally declared entities as storable, assignable or returnable value (exceq
here idiomsofthe language make it unavoidable).

D
W
e \Where unavoidable, ensure that the lifetime of the variable containing the address is completely e
bly thelifetime of the designated object.
N

evepreturn the address of a local variable as the result of a function call.

the
nption
At is,
e it
rned
te

to
tively
5 for
g such

able

b of

[

closed

6.42.6 Implications for standardization
In future standardization activities, the following items should be considered:

e Do not provide means to obtain the address of a locally declared entity as a storable value; or

e Define implicit checks to implement the assurance of enclosed lifetime expressed in subclause 5 of this

vulnerability. Note that, in many cases, the check is statically decidable, for example, when the address of

a local entity is taken as part of a return statement or expression.

78 © ISO/IEC 2010 - All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

6.43

ISO/IEC TR 2477

Subprogram Signature Mismatch [OTR]

6.43.1 Description of application vulnerability

2:2010(E)

If a subprogram is called with a different number of parameters than it expects, or with parameters of different

types than it expects, then the results will be incorrect. Depending on the language, the operating environment,

and the implementation, the error might be as benign as a diagnostic message or as extreme as a program

continuing to execute with a corrupted stack. The possibility of a corrupted stack provides opportunities for

penetr

6.43.2

CWE:
62
68
68
JSF AV
MISRA
MISRA
CERT(Q

6.43.3

When
subprd
argum
comm
progra

The co
param
subpro
conver
subprd
additig

ption.

Cross reference

8. Function Call with Incorrectly Specified Arguments

6. Function Call with Incorrect Argument Type

3. Function Call with Incorrect Order of Arguments

Rule: 108

C2004:8.1,8.2,8.3,16.1, 16.3, 16.4, 16.5, and 16.6

C++2008: 0-3-2, 3-2-1, 3-2-2, 3-2-3, 3-2-4, 3-3-1, 3-9-1, 8-3-1, 8*4-1, and 8-4-2
guidelines: DCL31-C, and DCL35-C

Mechanism of failure

h subprogram is called, the actual arguments.oféthe call are pushed on to the execution stack. Whe
gram terminates, the formal parameters ate popped off the stack. If the number and type of the 3
bnts do not match the number and type'of the formal parameters, then the push and the pop will
ensurable and the stack will be corrupted. Stack corruption can lead to unpredictable execution of
I and can provide opportunities.for execution of unintended or malicious code.

mpilation systems for many.languages and implementations can check to ensure that the list of ac
bters and any expectedireturn match the declared set of formal parameters and return value (the
gram signature) in'both number and type. (In some cases, programmers should observe a set of
tions to ensure that this is true.) However, when the call is being made to an externally compiled
gram, an object-code library, or a module compiled in a different language, the programmer must|
nal steps\to ensure a match between the expectations of the caller and the called subprogram.

6.43.41 Applicable language characteristics

n the
ctual
not be
the

tual

take

This vu

Inerability description is intended to be applicable to languages with the following characteristics:

Languages that do not require their implementations to ensure that the number and types of actual

arguments are equal to the number and types of the formal parameters.

Implementations that permit programs to call subprograms that have been externally compiled (without

a means to check for a matching subprogram signature), subprograms in object code libraries, and any

subprograms compiled in other languages.

ISO/IEC 2010 — All rights reserved

79

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

6.43.5 Avoiding the vulnerability or mitigating its effects

Software

developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Take advantage of any mechanism provided by the language to ensure that subprogram signatures

match.

e Avoid any language features that permit variable numbers of actual arguments without a method of

enforcing a match for any instance of a subprogram call.

6.43.6

In future

°
[=

6.44

6.44.1

Recursior
code that
the consl

6.44.2

CWE:
674.
JSF AV RY
MISRA C
MISRA C+
CERT C g\
Ada Quai

6.44.3

aRke advantage of any fanguage or Impiementation feature that would guarantee matching the
ubprogram signature in linking to other languages or to separately compiled modules.
ntensively review subprogram calls where the match is not guaranteed by tooling.

mplications for standardization
tandardization activities, the following items should be considered:

hnguage specifiers could ensure that the signatures of subprograms match within a single compila
hit and could provide features for asserting and checking the match with“externally compiled
Ibprograms.

Recursion [GDL]

Description of application vulnerability

is an elegant mathematical mechanism for definihg the values of some functions. It is tempting tq
mirrors the mathematics. However, the use:6f‘recursion in a computer can have a profound effed
mption of finite resources, leading to denial of service.

Cross reference

Uncontrolled Recursion
le: 119

2004: 16.2

+2008: 7-5-4

idelines: MEMIO5-C

ity and Style Guide: 5.6.6

Mechanism of failure

ion

write
t on

Recursion provides for the economical definition of some mathematical functions. However, economical

definition and economical calculation are two different subjects. It is tempting to calculate the value of a recursive

function using recursive subprograms because the expression in the programming language is straightforward

and easy to understand. However, the impact on finite computing resources can be profound. Each invocation of

a recursive subprogram may result in the creation of a new stack frame, complete with local variables. If stack

space is limited and the calculation of some values will lead to an exhaustion of resources resulting in the program

terminati

80

ng.

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

In calculating the values of mathematical functions the use of recursion in a program is usually obvious, but this is
not true in the general case. For example, finalization of a computing context after treating an error condition
might result in recursion (such as attempting to "clean up" by closing a file after an error was encountered in
closing the same file). Although such situations may have other problems, they typically do not result in
exhaustion of resources but may otherwise result in a denial of service.

6.44.4 Applicable language characteristics

bla o loo tha f
1

Th [N H H Y | riptar-te—tatarnded-ta-b A H M WIS N 1
Is V III_IUUIIILY \J_J\’IIPLIUII oIt iiucu tu ve UH'\JIIDUMI\- v IQIISUUS_J VWILTT LITC i

A haoy farick:
v UVVIIIS wiiraracicriotlico.

¢ | Any language that permits the recursive invocation of subprograms.
6.44.5 Avoiding the vulnerability or mitigating its effects

Softwdre developers can avoid the vulnerability or mitigate its ill effects in the following-ways:

e | Minimize the use of recursion.
e | Converting recursive calculations to the corresponding iterative calculation. In principle, any recursive
calculation can be remodeled as an iterative calculation which will hate a smaller impact on somg
computing resources but which may be harder for a human to comprehend. The cost to human
understanding must be weighed against the practical limits of computing resource.

e | In cases where the depth of recursion can be shown to be statically bounded by a tolerable number, then
recursion may be acceptable, but should be documented for the use of maintainers.

It should be noted that some languages or implementations\provide special (more economical) treatmentt of a
form of recursion known as tail-recursion. In this case, the impact on computing economy is reduced. When using
such allanguage, tail recursion may be preferred toan-iterative calculation.

6.44.4 Implications for standardization

[Nione]
6.45 | Returning Error Status [NZN]
6.45.1 Description of application vulnerability

Unpredicted error conditions—perhaps from hardware (such as an 1/O device error), perhaps from softwpre (such
as heap exhaustion)=sometimes arise during the execution of code. Programming languages provide a
surprisingly wide-variety of mechanisms to deal with such errors. The choice of a mechanism that doesn't match

the pragramming language can lead to errors in the execution of the software or unexpected termination of the
i i i i i in d denial

progra
of service attack.

6.45.2 Cross reference

JSF AV Rules: 115 and 208

MISRA C 2004: 16.10

MISRA C++ 2008: 15-3-2 and 19-3-1

CERT C guidelines: DCLO9-C, ERROO-C, and ERR02-C

ISO/IEC 2010 — All rights reserved 81

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IECT

R 24772:2010(E)

6.45.3 Mechanism of failure

Even in the best-written programs, error conditions sometimes arise. Some errors occur because of defects in the

software itself, but some result from external conditions in hardware, such as errors in 1/O devices, or in the

software

system, such as exhaustion of heap space. If left untreated, the effect of the error might result in

termination of the program or continuation of the program with incorrect results. To deal with the situation,

designers of programming languages have equipped their languages with different mechanisms to detect and

treat such errors. These mechanisms are typically intended to be used in specific programming idioms. However,

the mechjanisms differ among languages. A programmer expert in one language might mistakenly use an
inappropfiate idiom when programming in a different language with the result that some errors are |eft

untreate
attacks.

In genera
memory)
even usu
the term
via hardw
(such as 3

6.45.4

Different
provide a
mechanis

The simp
unusual g
sometimg
approach
Obviousl
subprogr
necessar

Some lan
the indicg
subprogr

, leading to termination or incorrect results. Attackers can exploit such weaknesses in denial of se

, languages make no distinction between dealing with programming errors (like an’access to prote
unexpected hardware errors (like device error), expected but unusual conditions (like end of file)
h| conditions that fail to provide the typical result (like an unsuccessful search). This description wi
‘error" to apply to all of the above. The description applies equally to‘error conditions that are def
are mechanisms and error conditions that are detected via software-during execution of a subpro
n inappropriate parameter value).

Applicable language characteristics

programming languages provide remarkably difféfent mechanisms for treating errors. In language
number of error detection and treatment meehanisms, it becomes a design issue to match the
m to the condition. This clause will describe the mechanisms that are provided in widely used lang

est case is the set of languages that provide no special mechanism for the notification and treatm
onditions. In such languages, errorconditions are signaled by the value of an auxiliary status varia
s a subprogram parameter. The programming language C standard library functions use a variant

, in such languages, it isimperative to check and act upon the status variable after every call to a
hm that might provide an error indication. If error conditions can occur in an asynchronous manne
to provide means-to check for errors in a systematic and periodic manner.

buages permit the passing of a label parameter. If an error is encountered, the subprogram return
ted labelrather than to the point at which it was called. Similarly some languages accept the nam
hm(tobe used to handle errors. In either case, it is imperative to provide labeled code or a subprog

s the error status is providedJas the return value and sometimes in an additional global error value|

rvice

pcted
and
| use
ected
sram

s that

uages.

bnt of

ble,
of this

r,itis

5 to
b of a
rram

to deal w

delo I H Y e
U aimPUSSTUTT TTTUT STLUdUIUTTS,

The approaches described above have the disadvantage that error checking must be provided at every call to a

subprogram. This can clutter the code immensely to deal with situations that may occur rarely. For this reason,

some languages provide an exception mechanism that automatically transfers control when an error is
encountered. This has the potential advantage of allowing error treatment to be factored into distinct error

handlers, leaving the main execution path to deal with the usual results. The disadvantages, of course, are that

82

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

the lan

ISO/IEC TR 24772:2010(E)

guage design is complicated and the programmer must deal with the conceptually more complex problem

of providing error handlers that are removed from the immediate context of a specific call to a subprogram.

Furthermore, different languages provide exception-handling mechanisms that differ in the manner in which

various design issues are treated:

How is the occurrence of an exception bound to a particular handler?
What happens when no handler is local to an exception occurrence? Is the exception propagated in some
manner or is it lost?

6.45.5

Given {
except
effecti
should
mecha
arithm
should
afterw

Softwa

What happens after an exception handler executes? Is control returned to the point before thecpll or
after the call, or is the calling routine terminated in some way? If the calling routine is terminated, is there
some provision for finalization, such as closing files or releasing resources?
Are programmers permitted to define additional exceptions?

Does the language provide default handlers for some exceptions or must the programmer explicitly
provide for all of them?
Can predefined exceptions be raised explicitly?

Under what circumstances can error checking be disabled?
Avoiding the vulnerability or mitigating its effects

he variety of error handling mechanismes, it is difficult to write-general guidelines. However, dealing with
on handlers can stress the capability of many static analysis tools and can, in some cases, reduce fhe
eness of their analysis. Therefore, for situations wheré.the highest of reliability is required, the application
be designed so that exception handling is not uséd.at all. In the more general case, exception-hanfdling
hisms should be reserved for truly unexpected.situations and other situations (possibly hardware
ptic overflow) where no other mechanism_is available. Situations which are merely unusual, like end of file,
be treated by explicit testing—either prior to the call which might raise the error or immediately
ard.

re developers can avoid the vulnerability or mitigate its ill effects in the following ways:

Checking error return.values or auxiliary status variables following a call to a subprogram is mandatory
unless it can be demanstrated that the error condition is impossible.
In dealing with languages where untreated exceptions can be lost (for example, an exception thaf goes
untreated within an Ada task), it is mandatory to deal with the exception in the local context before it is
lost.
Whentgxecution within a particular context is abandoned due to an exception, it is important to finalize
the context by closing open files, releasing resources and restoring any invariants associated with the

context.

It is often not appropriate to repair an error condition and retry the operation. In such cases, one often
treats a symptom but not the underlying problem. It is usually a better solution to finalize and terminate
the current context and retreat to a context where the situation is known.

Error checking provided by the language, the software system, or the hardware should never be disabled
in the absence of a conclusive analysis that the error condition is rendered impossible.

Because of the complexity of error handling, careful review of all error handling mechanisms is
appropriate.

ISO/IEC 2010 — All rights reserved 83

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

e In applications with the highest requirements for reliability, defense-in-depth approaches are often

appropriate, for example, checking and handling errors thought to be impossible.
6.45.6 Implications for standardization
In future standardization activities, the following items should be considered:

e Astandardized set of mechanisms for detecting and treating error conditions should be developed so that

a -: :- a ne e en DO nle a a a nem a aoe no mean a -: :- no a Sethe
same mechanisms as there should be a variety (for example, label parameters, auxiliary status varigbles),
bt each of the mechanisms should be standardized.
6.46 [Termination Strategy [REU]
6.46.1 Description of application vulnerability
Expectatipns that a system will be dependable are based on the confidence that the system will operate as
expected|and not fail in normal use. The dependability of a system and its fault'tolerance can be measured
through the component part's reliability, availability, safety and security. Reliability is the ability of a systenp or
component to perform its required functions under stated conditions for a'specified period of time [IEEE 1990
glossary]] Availability is how timely and reliable the system is to itsinténded users. Both of these factors mlatter
highly in $ystems used for safety and security. In spite of the best.intentions, systems may encounter a failyre,
either frgm internally poorly written software or external forces'such as power outages/variations, floods, gr
other natjural disasters. The reaction to a fault can affect the-performance of a system and in particular, the
safety anfl security of the system and its users.
When thg¢ software does not terminate in the planfied mechanism, safety or security is compromised, as failing in
an unspefified way interferes with the alternative recovery features. In safety-related systems the results can be
catastroplic: for other systems the result can'mean failure of the complete system.
6.46.2 (rossreference
JSF AV Ryle: 24
MISRA C p004: 20.11
MISRA C4+ 2008: 0-3-2, 15:5-2, 15-5-3, and 18-0-3
CERT C gyidelines: ERR04-C, ERRO6-C and ENV32-C
Ada Quaility and-Style Guide: 5.8 and 7.5
6.46.3 Mechanism of failure

The reaction to a fault in a system can depend on the criticality of the part in which the fault originates. When a

program consists of several tasks, each task may be critical, or not. If a task is critical, it may or may not be

restartable by the rest of the program. Ideally, a task that detects a fault within itself should be able to halt

leaving its resources available for use by the rest of the program, halt clearing away its resources, or halt the

entire program. The latency of task termination and whether tasks can ignore termination signals should be

clearly sp

84

ecified. Having inconsistent reactions to a fault can potentially be a vulnerability.

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

When a fault is detected, there are many ways in which a system can react. The quickest and most noticeable
way is to fail hard, also known as fail fast or fail stop. The reaction to a detected fault is to immediately halt the
system. Alternatively, the reaction to a detected fault could be to fail soft. The system would keep working with
the faults present, but the performance of the system would be degraded. Systems used in a high availability
environment such as telephone switching centers, e-commerce, or other "always available" applications would
likely use a fail soft approach. What is actually done in a fail soft approach can vary depending on whether the
system is used for safety critical or security critical purposes. For fail-safe systems, such as flight controllers,

traffic signals, or medical monitoring ems, there would be no effort to meet normal operational requjrements,

but rather to limit the damage or danger caused by the fault. A system that fails securely, such as crypto|ogic
systems, would maintain maximum security when a fault is detected, possibly through a denial of-senvicel

6.46.4 Applicable language characteristics

This vdulnerability description is intended to be applicable to all languages.
6.46.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in-the*following ways:

e | A strategy for fault handling should be decided. Consistency in fault handling should be the samg with

respect to critically similar parts.

e | A multi-tiered approach of fault prevention, fault detection and fault reaction should be used.

o | System-defined components that assist in uniformity of fault handling should be used when available. For

one example, designing a "runtime constraint handler" (as described in ISO/IEC TR 24731-1 [13]) permits

the application to intercept various erroneouds'situations and perform one consistent response, slich as

flushing a previous transaction and re-statting at the next one.

e | When there are multiple tasks, a fault-handling policy should be specified whereby a task may

0 halt, and keep its resources)available for other tasks (perhaps permitting restarting of the faulting
task)

0 halt, and removeitsiresources (perhaps to allow other tasks to use the resources so freegl, or to
allow a recreation of the task)

0 halt, and signal the rest of the program to likewise halt.

6.46.4 Implications for standardization
In futufe standardization activities, the following items should be considered:

e | Languages should consider providing a means to perform fault handling. Terminology and the means

[N [PAN AH ol HY N o 1
SITUUTU DT LUUTUNTAltTuU wWitit ULTICT TalTigudasgto.
6.47 ExtraIntrinsics [LRM]
6.47.1 Description of application vulnerability

Most languages define intrinsic procedures, which are easily available, or always "simply available", to any
translation unit. If a translator extends the set of intrinsics beyond those defined by the standard, and the

ISO/IEC 2010 — All rights reserved 85

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

standard specifies that intrinsics are selected before procedures of the same signature defined by the application,

a different procedure may be unexpectedly used when switching between translators.
6.47.2 Cross reference
[None]

6.47.3 Mechanism of failure

Most stapdard programming languages define a set of intrinsic procedures which may be used in any applig
Some language standards allow a translator to extend this set of intrinsic procedures. Some languagecstand
specify that intrinsic procedures are selected ahead of an application procedure of the same signature. This
cause a dffferent procedure to be used when switching between translators.

For example, most languages provide a routine to calculate the square root of a number, usually named sq
If a translator also provided, as an extension, a cube root routine, say named cbrt();that extension may
override §n application defined procedure of the same signature. If the two different/cbrt () routines cho
different pranch cuts when applied to complex arguments, the application could\ihpredictably go wrong.

ation.
ards
may

reQ).

e

If the language standard specifies that application defined procedures aré\selected ahead of intrinsic procedlures

of the sarne signature, the use of the wrong procedure may mask a linking error.

6.47.4 Applicable language characteristics

This vulngrability description is intended to be applicable to.tanguages with the following characteristics:

ny language where translators may extendithe set of intrinsic procedures and where intrinsic
procedures are selected ahead of application defined (or external library defined) procedures of the
signature.

6.47.5 Avoiding the vulnerability or'mitigating its effects

Software|developers can avoid the vulnerability or mitigate its ill effects in the following ways:

se whatever language features are available to mark a procedure as language defined or applicati
defined.

aware ofthe'documentation for every translator in use and avoid using procedure signatures ma
those defined by the translator as extending the standard set.

6.47.6 [mplications for standardization

same

PN

tching

In future standardization activities, the following items should be considered:

e C(Clearly state whether translators can extend the set of intrinsic procedures or not.
e C(Clearly state what the precedence is for resolving collisions.

e (Clearly provide ways to mark a procedure signature as being the intrinsic or an application provided

procedure.

86 © 1SO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

6.48

6.48.1

ISO/IEC TR 24772:2010(E)

Require that a diagnostic is issued when an application procedure matches the signature of an intrinsic

procedure.
Type-breaking Reinterpretation of Data [AMV]

Description of application vulnerability

In most cases, objects in programs are assigned locations in processor storage to hold their value. If the same

storag
one ob
object
results|

6.48.2

JSF AV
MISRA
MISRA
CERT(Q

Ada Quiaility and Style Guide: 7.6.7 and 7.6.8

6.48.3

Somet
repres
progra
type-b

encountered situations.

Type-b
ability

Examp

FSpacE 1S asSigned to more thamone object—r=either staticatty or temporarity—thenachange i the
ject will have an effect on the value of the other. Furthermore, if the representation of the value-g
is reinterpreted as being the representation of the value of an object with a different type{ unexps
may occur.

Cross reference

Rules 153 and183

2004: 18.2,18.3,and 18.4

C++ 2008: 4-5-1 to 4-5-3, 4-10-1, 4-10-2, and 5-0-3 to 5-0-9
guidelines: MEMO08-C

Mechanism of failure

mes there is a legitimate need for applications to place different interpretations upon the same st
pntation of data. The most fundamental examplgis a program loader that treats a binary image of
M as data by loading it, and then treats it as a-program by invoking it. Most programming language
reaking reinterpretation of data, however, some offer less error prone alternatives for commonly

reaking reinterpretation of representation presents obstacles to human understanding of the cod
bf tools to perform effective static analysis, and the ability of code optimizers to do their job.

es include:

Providing alternative mappings of objects into blocks of storage performed either statically (such
Fortran common) or dynamically (such as pointers).

Union types, particularly unions that do not have a discriminant stored as part of the data struct
Opérations that permit a stored value to be interpreted as a different type (such as treating the
repfesentation of a pointer as an integer).

value of
f an
cted

pred
a
s permit

b, the

In all of these cases accessing the value of an object may produce an unanticipated result.

A related problem, the aliasing of parameters, occurs in languages that permit call by reference because

supposedly distinct parameters might refer to the same storage area, or a parameter and a non-local object might

refer to the same storage area. That vulnerability is described in Passing Parameters and Return Values [CSJ].

ISO/IEC 2010 — All rights reserved

87

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

6.48.4

Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

6.48.5

Software geveleperseanavoid-the-varera

6.48.6

In future ptandardization activities, the following items should be considered:

88

A programming language that permits multiple interpretations of the same bit pattern.

Avoiding the vulnerability or mitigating its effects

tieata dte Hl Affabe ot o £ (VVH- V- RVYVENVI
g ate S eetsHtrne OWHRE-WaYST

Programmers should avoid reinterpretation performed as a matter of convenience; for example, us
ifteger pointer to manipulate character string data should be avoided. When type-breaking
pinterpretation is necessary, it should be carefully documented in the code. Howeveti this vulnera

- =

chnnot be completely avoided because some applications view stored data in alternative ways.
When using union types it is preferable to use discriminated unions. This is a fotm-of a union where
stored value indicates which interpretation is to be placed upon the data. Seme languages (such as
vpriant records in Ada) enforce the view of data indicated by the value of.the discriminant. If the lar
d

the code should implement an explicit discriminant and check its«walue before accessing the data in
uhion, or use some other mechanism to ensure that correct interpretation is placed upon the data
Qperations that reinterpret the same stored value as represénting a different type should be avoidg
if easier to avoid such operations when the language clearly identifies them. For example, the namé
Ada's Unchecked_Conversion function explicitlywarns of the problem. A much more difficult
s{tuation occurs when pointers are used to achieve type reinterpretation. Some languages perform
checking of pointers and place restrictions on*the ability of pointers to access arbitrary locations in
s
f

orage. Others permit the free use of pointers. In such cases, code must be carefully reviewed in a
or unintended reinterpretation of stored values. Therefore it is important to explicitly comment th
spurce code where intended reinterpretations occur.

Static analysis tools may be helpful in locating situations where unintended reinterpretation occurs

i may be appropriate tosegregate intended reinterpretation operations into distinct subprograms.

mplications forstandardization

Because the ability to perform reinterpretation is sometimes necessary, but the need for it is rare,

ng an

ility

guage

pes not enforce the interpretation (for example, equivalence in Fortran and union in C and C++), then

the
alue.
d. It
e of

type-

search

2)

On

the other hand, the presence.of reinterpretation greatly complicates static analysis for other problgms, so

ogramming language designers might cansider nutting caution labels on onerations that nermit
5 5 e 5 5 g 5 1 1

reinterpretation. For example, the operation in Ada that permits unconstrained reinterpretation is called

Unchecked_Conversion.

Because of the difficulties with undiscriminated unions, programming language designers might consider
offering union types that include distinct discriminants with appropriate enforcement of access to objects.

© ISO/IEC 2010 — All rights re:

served

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

6.49

6.49.1

ISO/IEC TR 24772:2010(E)

Memory Leak [XYL]

Description of application vulnerability

A memory leak occurs when software does not release allocated memory after it ceases to be used. Repeated

occurrences of a memory leak can consume considerable amounts of available memory. A memory leak can be

exploit
that tri

ed by attackers to generate denial-of-service by causing the program to execute repeatedly a sequence
ggers the leak. Moreover, a memory leak can cause any long-running critical program to shutdown

prema

6.49.2

CWE:
40
JSF AV
MISRA
CERT(Q

Ada Quaility and Style Guide: 5.4.5, 5.9.2, and 7.3.3

6.49.3

As a pr
runtim
failing
will ev
exhaus

If an afitacker can determine the cause of an“existing memory leak, the attacker may be able to cause the

applica

6.49.4 Applicable language characteristics

This vy

6.49.5

urely.

Cross reference

1. Failure to Release Memory Before Removing Last Reference (aka ‘Memory Leak’)
Rule: 206

C2004:20.4

guidelines: MEMOO-C and MEM31-C

Mechanism of failure

ocess or system runs, any memory taken from dynamicimemory and not returned or reclaimed (by the

e system or a garbage collector) after it ceases to bewused, may result in future memory allocation|requests
for lack of free space. Alternatively, memory claimed and returned can cause the heap to fragment, which
bntually result in an inability to take the necessd¥y size storage. Either condition will result in a memory
tion exception, and program termination or a system crash.

tion to leak quickly and therefore cause the application to crash.

Inerability descriptiofiiis'intended to be applicable to languages with the following characteristics:

Languages that 'support mechanisms to dynamically allocate memory and reclaim memory under program
control.

Avoiding the vulnerability or mitigating its effects

Softwa

ré.dévelopers can avoid the vulnerability or mitigate its ill effects in the following ways:

Use of garbage collectors that reclaim memory that will never be used by the application again. Some
garbage collectors are part of the language while others are add-ons.

Allocating and freeing memory in different modules and levels of abstraction may make it difficult for
developers to match requests to free storage with the appropriate storage allocation request. This may
cause confusion regarding when and if a block of memory has been allocated or freed, leading to memory
leaks. To avoid these situations, it is recommended that memory be allocated and freed at the same level
of abstraction, and ideally in the same code module.

ISO/IEC 2010 — All rights reserved 89

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

e Storage pools are a specialized memory mechanism where all of the memory associated with a class of
objects is allocated from a specific bounded region. When used with strong typing one can ensure a
strong relationship between pointers and the space accessed such that storage exhaustion in one pool
does not affect the code operating on other memory.

e Memory leaks can be eliminated by avoiding the use of dynamically allocated storage entirely, or by doing
initial allocation exclusively and never allocating once the main execution commences. For safety-critical
systems and long running systems, the use of dynamic memory is almost always prohibited, or restricted

tothe initialization phase of execution

e Use static analysis, which can sometimes detect when allocated storage is no longer used and has_not
been freed (for reuse).

6.49.6 [mplications for standardization
In future ptandardization activities, the following items should be considered:

e Lhnguages can provide syntax and semantics to guarantee program-wide that dynamic memory is not
used (such as the configuration pragmas feature offered by some progtamming languages).

e Lhnguages can document or can specify that implementations must document choices for dynamic
npemory management algorithms, to help designers decide on appropriate usage patterns and recovery
téchniques as necessary.

6.50 Argument Passing to Library Functions_ {TR]]
6.50.1 DPescription of application vulnerability

Libraries that supply objects or functions are in masticases not required to check the validity of parameters
passed td them. In those cases where parameterivalidation is required there might not be adequate paramjeter
validation).

6.50.2 (ross reference

CWE:
114.|Process Control

JSF AV Rules 16, 18, 19, 20,21, 22, 23, 24, and 25

MISRA C p004: 20.2, 20.8, 20.4, 20.6, 20.7, 20.8, 20.9, 20.10, 20.11, and 20.12

MISRA C4+ 2008: 1740-1, 17-0-5, 18-0-2, 18-0-3, 18-0-4, 18-2-1, 18-7-1 and 27-0-1
CERT C gyidelines:NNT03-C and STRO7-C

6.50.3 Mechanism of failure

When calling a library, either the calling function or the library may make assumptions about parameters. For
example, it may be assumed by a library that a parameter is non-zero so division by that parameter is performed
without checking the value. Sometimes some validation is performed by the calling function, but the library may
use the parameters in ways that were unanticipated by the calling function resulting in a potential

vulnerability. Even when libraries do validate parameters, their response to an invalid parameter is usually
undefined and can cause unanticipated results.

90 © 1SO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

6.50.4 Applicable language characteristics

This vu

6.50.5

Inerability description is intended to be applicable to languages with the following characteristics:

Languages providing or using libraries that do not validate the parameters accepted by functions,

methods and objects.

Avoiding the vulnerability or mitigating its effects

Softwa

Itis no

6.50.6

In futu

6.51

re developers can avoid the vulnerability or mitigate its ill effects in the following ways:

Libraries should be defined so that as many parameters as possible are validated.
Libraries should be defined to validate any values passed to the library before the valuelis used.

Demonstrate statically that the parameters are never invalid.
Use only libraries known to have been developed with consistent and validated-interface require|

ted that several approaches can be taken, some work best if used in conjunction with each other.
Implications for standardization
re standardization activities, the following items should be considered:

All languages that define a support library should consider removing most if not all cases of unde
behaviour from the library clauses.
Libraries should be defined so that all parameters are validated.

Dynamically-linked Code and Self-modifying Code [NYY]

6.51.1 Description of application vulnerability

Code t
replaci
LD L

hat is dynamically linked may be'different from the code that was tested. This may be the result o
hg a library with another of-.the same name or by altering an environment variable such as
BRARY_PATH on UNIX.platforms so that a different directory is searched for the library file. Exe

code that is different than.that which was tested may lead to unanticipated errors or intentional malicioy

activity.

On son
Histori
memo

he platforms; and in some languages, instructions can modify other instructions in the code space.
rally self-modifying code was needed for software that was required to run on a platform with ver
v.Adtis now primarily used (or misused) to hide functionality of software and make it more difficu

Develop wrappers around library functions that check the parameters before calling\the function|

ments.

fined

f

tuting

w

v limited
it to

revers

engineer or Tor specialty applicatlions such as grapnics where the algorithm Is tuned at runtime T

give

better performance. Self-modifying code can be difficult to write correctly and even more difficult to test and

maintain correctly leading to unanticipated errors.

6.51.2

JSF AV

Cross reference

Rule: 2

ISO/IEC 2010 — All rights reserved

91

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

6.51.3 Mechanism of failure

Through the alteration of a library file or environment variable, the code that is dynamically linked may be
different from the code which was tested resulting in different functionality.

On some platforms, a pointer-to-data can erroneously be given an address value that designates a location in the
instruction space. If subsequently a modification is made through that pointer, then an unanticipated behaviour
can result.

6.51.4 Applicable language characteristics

This vulngrability description is intended to be applicable to languages with the following characteristics:

L]
—

hnguages that allow a pointer-to-data to be assigned an address value that designates\a location i) the
nstruction space.

e Lhnguages that allow execution of code that exists in data space.
hnguages that permit the use of dynamically linked or shared libraries.
hnguages that execute on an OS that permits program memory to be hoth writable and executable.

e o
~— —

6.51.5 Avoiding the vulnerability or mitigating its effects

Software|developers can avoid the vulnerability or mitigate its ill effects’in the following ways:

Verify that the dynamically linked or shared code being.dsed is the same as that which was tested.

e Do not write self-modifying code except in extremely.rare instances. Most software applications should
never have a requirement for self-modifying code.

e I those extremely rare instances where its usg.is justified, self-modifying code should be very limitgd and
havily documented.

6.51.6 [mplications for standardization

In future ptandardization activities, the following items should be considered:

L]
—

hnguages should consider providing a means so that a program can either automatically or manually

O

neck that the digital sighature of a library matches the one in the compile/test environment.
6.52 Library Signature [NSQ]
6.52.1 Description of application vulnerability

Programd wfitten in modern languages may use libraries written in other languages than the program

implemeutatiun :allsuasc. H-thetibrar vis :alsc, threeffortof addillg, signatures for-atof-the-functionstse Yy
hand may be tedious and error-prone. Portable cross-language signatures will require detailed understanding of
both languages, which a programmer may lack.

Integrating two or more programming languages into a single executable relies upon knowing how to interface
the function calls, argument list and global data structures so the symbols match in the object code during linking.

Byte alignment can be a source of data corruption if memory boundaries between the programming languages
are different. Each language may also align structure data differently.

92 © ISO/IEC 2010 - All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

6.52.2 Cross reference

MISRA C 2004: 1.3
MISRA C++ 2008: 1-0-2

6.52.3 Mechanism of failure

When the library and the application in which it is to be used are written in different languages, the specification

i tures is complicated by inter-language issues
of sign P Y gag

As usefl in this vulnerability description, the term library includes the interface to the operating system, which
may b¢ specified only for the language used to code the operating system itself. In this case, any program written
in any pther language faces the inter-language interoperability issue of creating a fully-functional signatufe.

When the application language and the library language are different, then the ability-to specify signatures
accordjng to either standard may not exist, or be very difficult. Thus, a translator-by-translator solution may be
needed, which maximizes the probability of incorrect signatures (since the solution must be recreated fof each
translator pair). Incorrect signatures may or may not be caught during the linking phase.

6.52.4 Applicable language characteristics

This vylnerability description is intended to be applicable to languages with the following characteristics:
e | Languages that do not specify how to describe signatures for subprograms written in other languages.

6.52.5 Avoiding the vulnerability or mitigatingits effects

Softwdre developers can avoid the vulnerability;or mitigate its ill effects in the following ways:

e | Use tools to create the signatures(
e | Avoid using translator options'or language features to reference library subprograms without prgper
signatures.

6.52.4 Implications for standardization
In futufe standardizatioh-activities, the following items should be considered:

e | Providescarrect linkage even in the absence of correctly specified procedure signatures. (Note thiat this
may.bevery difficult where the original source code is unavailable.)
e | Pfovide specified means to describe the signatures of subprograms.

6.53 Unanticipated Exceptions from Library Routines [HJW]
6.53.1 Description of application vulnerability

A library in this context is taken to mean a set of software routines produced outside the control of the main
application developer, usually by a third party, and where the application developer may not have access to the
source. In such circumstances the application developer has limited knowledge of the library functions, other than
from their behavioural interface.

ISO/IEC 2010 — All rights reserved 93

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

Whilst the use of libraries can present a number of vulnerabilities, the focus of this vulnerability is any undesirable

behaviour that a library routine may exhibit, in particular the generation of unexpected exceptions.

6.53.2

Cross reference

JSF AV Rule: 208
MISRA C 2004: 3.6, 20.3
MISRA C++2008: 15-3-1, 15-3-2, 17-0-4

Ada Quaifttyand-Styte Guider 5.8 and 7.5

6.53.3

In some lpnguages, unhandled exceptions lead to implementation-defined behaviour. This canjinclide imm
terminatipn, without for example, releasing previously allocated resources. If a library routinetraises an
unanticippted exception, this undesirable behaviour may result.

It should pe noted that the considerations of [NZN], Returning Error Status, are also relevant here.

6.53.4

This vulngrability description is intended to be applicable to languageswith the following characteristics:

6.53.5

Software|developers can avoid the vulnerability\or mitigate its ill effects in the following ways:

6.53.6

Mechanism of failure

Applicable language characteristics

—

hnguages that can link previously developed library code (where the developer and compiler don’t
ccess to the library source).

~— Q

hnguages that permit exceptions to be thrown but.do not require handlers for them.

Avoiding the vulnerability or mitigatingits effects

o>

bnstruct), so that any unanticipated exceptions can be caught and handled appropriately. This wr

ay be done for each library function call or for the entire behaviour of the program, for example,
the exception handlerin‘main for C++. However, note that the latter isn’t a complete solution, as st
jects are constr(cted before main is entered and are destroyed after it has been exited. Consequ
ISRA C++ [16}-bars class constructors and destructors from throwing exceptions (unless handled |
n alternative approach would be to use only library routines for which all possible exceptions are
specified:

Il library calls should be wrappéed-within a ‘catch-all’ exception handler (if the language supports SJICh a

bdiate

have

pping
having
ptic
ently,
bcally).

mplications for standardization

In future standardization activities, the following items should be considered:

94

Languages that provide exceptions should provide a mechanism for catching all possible exceptions

(for

example, a ‘catch-all’ handler). The behaviour of the program when encountering an unhandled exception

should be fully defined.

Languages should provide a mechanism to determine which exceptions might be thrown by a called

library routine.

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

7 Application Vulnerabilities

7.1 Adherence to Least Privilege [XYN]

7.1.1 Description of application vulnerability

Failure to adhere to the principle of least privilege amplifies the risk posed by other vulnerabilities.

7.1.2 [Crossreference

CWE:
250. Design Principle Violation: Failure to Use Least Privilege
CERT (guidelines: POS02-C

7.1.3 | Mechanism of failure

This vulnerability type refers to cases in which an application grants greater access rights than necessary.
Depenfing on the level of access granted, this may allow a user to access confidential information. For example,
programs that run with root privileges have caused innumerable Unix security disasters. It is imperative that you
carefully review privileged programs for all kinds of security problems,\but it is equally important that privileged
programs drop back to an unprivileged state as quickly as possible’to limit the amount of damage that an
overlopked vulnerability might be able to cause. Privilege mahagement functions can behave in some lesg-than-
obviouls ways, and they have different quirks on different platforms. These inconsistencies are particularly
pronoynced if you are transitioning from one non-root,user to another. Signal handlers and spawned prdgcesses
run at the privilege of the owning process, so if a process is running as root when a signal fires or a sub-pfocess is
executgd, the signal handler or sub-process will:operate with root privileges. An attacker may be able to |everage
these g¢levated privileges to do further damage. To grant the minimum access level necessary, first identify the
differept permissions that an application<or’user of that application will need to perform their actions, sugh as file
read and write permissions, networksocket permissions, and so forth. Then explicitly allow those actiond while
denying all else.

7.1.4 | Avoiding the vulnerability or mitigating its effects
Software developers.can avoid the vulnerability or mitigate its ill effects in the following ways:

e | Very carefully manage the setting, management and handling of privileges. Explicitly manage trust zones
in the)software.
e | Follow the principle of least privilege when assigning access rights to entities in a software systen

=)

7.2 Privilege Sandbox Issues [XYO]

7.2.1 Description of application vulnerability

A variety of vulnerabilities occur with improper handling, assignment, or management of privileges. These are
especially present in sandbox environments, although it could be argued that any privilege problem occurs within
the context of some sort of sandbox.

ISO/IEC 2010 — All rights reserved 95

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

7.2.2

CWE:

Cross reference

266. Incorrect Privilege Assignment

267. Privilege Defined With Unsafe Actions
268. Privilege Chaining

269. Privilege Management Error

270. Privilege Context Switching Error

272.|Least Privilege Violation
273.Failure to Check Whether Privileges were Dropped Successfully
274.[Failure to Handle Insufficient Privileges
276.Insecure Default Permissions
CERT C gyidelines: POS36-C

7.2.3

The failune to drop system privileges when it is reasonable to do so is not an application vulnerability by itse
does, however, serve to significantly increase the severity of other vulnerabilities. According to the principlé
least priv|lege, access should be allowed only when it is absolutely necessary'to the function of a given systd
and only for the minimal necessary amount of time. Any further allowance of privilege widens the window
during which a successful exploitation of the system will provide anyattacker with that same privilege.

Many sitdations could lead to a mechanism of failure:

7.2.4

Mechanism of failure

>

product could incorrectly assign a privilege toa-particular entity.

>

particular privilege, role, capability, or right could be used to perform unsafe actions that were nd
ntended, even when it is assigned to the'correct entity. (Note that there are two separate sub-cate

ere: privilege incorrectly allows entities to perform certain actions; and the object is incorrectly
ccessible to entities with a given!privilege.)

wo distinct privileges, roles; capabilities, or rights could be combined in a way that allows an entit
erform unsafe actions that would not be allowed without that combination.

he software may notproperly manage privileges while it is switching between different contexts t
Foss privilege boundaries.

> 0 4 5B 4 o >

product maysnot properly track, modify, record, or reset privileges.

In some contexts, a system executing with elevated permissions will hand off a process/file or othe
ject.te:another process/user. If the privileges of an entity are not reduced, then elevated privileg
spreadthroughout a system and possibly to an attacker.

If. It
of

m,

bf time

t
gories

to

hat

ES are

T
operation.
A program, upon installation, may set insecure permissions for an object.

Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

96

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

e The principle of least privilege when assigning access rights to entities in a software system should be
followed. The setting, management and handling of privileges should be managed very carefully. Upon
changing security privileges, one should ensure that the change was successful.

e Consider following the principle of separation of privilege. Require multiple conditions to be met before
permitting access to a system resource.

e Trust zones in the software should be explicitly managed. If at all possible, limit the allowance of system
privilege to small, simple sections of code that may be called atomically.

e _As soon as passible after acquiring elevated privilege to call a privileged function such as chroo (), the

program should drop root privilege and return to the privilege level of the invoking user.
e | In newer Windows implementations, make sure that the process token has the Selmpersenate Pfivilege.

7.3 | Executing or Loading Untrusted Code [XYS]
7.3.1 | Description of application vulnerability

Executjng commands or loading libraries from an untrusted source or in an untrusted environment can cause an
applicdtion to execute malicious commands (and payloads) on behalf of an attacker.

7.3.2 | Cross reference

CWE:
114. Process Control
CERT (guidelines: PRE09-C, ENV02-C, and ENV03-C

7.3.3 | Mechanism of failure
Procesk control vulnerabilities take two forms:

e | An attacker can change the commiand that the program executes so that the attacker explicitly controls
what the command is.
e | An attacker can change thesenvironment in which the command executes so that the attacker imlplicitly
controls what the command means.

Considering only the first scénario, the possibility that an attacker may be able to control the command that is
executpd, process centrol vulnerabilities occur when:

o | Data enters the application from a source that is not trusted.
e | Thé data is used as or as part of a string representing a command that is executed by the application.

o | Byvéxecuting the command, the application gives an attacker a privilege or capability that the atthcker

would not otherwise have.
7.3.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Libraries that are loaded should be well understood and come from a trusted source with a digital
signature. The application can execute code contained in native libraries, which often contain calls that
are susceptible to other security problems, such as buffer overflows or command injection.

ISO/IEC 2010 — All rights reserved 97

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

All native libraries should be validated.

what these libraries actually do, and the potential for malicious code is high.

To help prevent buffer overflow attacks, validate all input to native calls for content and length.

ibrary should be built from the reviewed source before using it.

7.4 Unspecified Functionality [BVQ]

7.4.1

Unspecified functionality is code that may be executed, but whose behaviour does not contribute to‘the

requirem

in a spreddsheet, it does raise questions about the level of control of the development process.

In a secuffity-critical environment particularly, the developer of an application could-include a ‘trap-door’ to

illegitima

obvious scurity requirements.

7.4.2

JSF AV Ryle: 127

MISRA C

XYQ: Dedd and Deactivated code.

7.4.3

Unspecifi
unspecifi

In other dases, typically Easter Eggs, the functionality is unspecified as far as the user is concerned (nobody

spreadsh
effect thd

In the firs
functiong
release h

In effect,
else’. The

Determine if the application requires the use of the native library. It can be very difficult to determine

If the native library does not come from a trusted source, review the source code of the library. The

Description of application vulnerability

fe access to the system on which it is eventually executed, irrespective‘of whether the application

Cross reference

P004: 2.2,2.3,2.4,and 14.1

Mechanism of failure

bet expecting to find it inclGdes a flight simulator), but is specified by the development organizatio
y only reveal a subset of the program’s behaviour to the users.

t case, one wouldexpect a well managed development environment to discover the additional
lity during validation and verification. In the second case, the user is relying on the supplier not to
hrmful codé:

d program’s requirements are ‘the program should behave in the following manner and do not

 and do nothing else’ clause is often not explicitly stated, and can be difficult to demonstrate.

ed functionality is not a software vulnerability per se, but more a development issue. In some cases,

ents of the application. While this may be no more than an amusing ‘Easter Egg’, like the flight simlulator

allow
has

bd functionality may be added by a‘developer without the knowledge of the development organization.

buys a
n.In

hing

7.4.4 Avoiding the vulnerability or mitigating its effects

End users can avoid the vulnerability or mitigate its ill effects in the following ways:

e P
d
P

98

rograms and development tools that are to be used in critical applications should come from a
eveloper who uses a recognized and audited development process for the development of those
rograms and tools. For example: ISO 9001 or CMMI®.

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

e The development process should generate documentation showing traceability from source code to
requirements, in effect answering ‘why is this unit of code in this program?’. Where unspecified
functionality is there for a legitimate reason (such as diagnostics required for developer maintenance or
enhancement), the documentation should also record this. It is not unreasonable for customers of
bespoke critical code to ask to see such traceability as part of their acceptance of the application.

7.5 Distinguished Values in Data Types [KLK]

7.5.1 | Description of application vulnerability

Sometimes, in a type representation, certain values are distinguished as not being members of thé type, put
rather ps providing auxiliary information. Examples include special characters used as string terminators,
distinguished values used to indicate out of type entries in SQL (Structured Query Language)\database figlds, and
sentingls used to indicate the bounds of queues or other data structures. When the usage’pattern of codp
contaiing distinguished values is changed, it may happen that the distinguished value happens to coincifle with a
legitimiate in-type value. In such a case, the value is no longer distinguishable fromyan in-type value and the

softwalre will no longer produce the intended results.

7.5.2 | Cross reference

CWE:
2d: Improper input validation
137: Representation errors

JSF AV|Rule: 151

7.5.3 Mechanism of failure

A “distjnguished value” or a "magic number™in the representation of a data type might be used to repregent out-
of-typé¢ information. Some examples include the following:

e | The use of a special code{ such as “00”, to indicate the termination of a coded character string.
e | The use of a special value, such as “999...9”, as the indication that the actual value is either not khown or
is invalid.

If the Use of the software is later generalized, the once-special value can become indistinguishable from valid

—+

data. Note that the problem may occur simply if the pattern of usage of the software is changed from tha
anticippted by-the software’s designers. It may also occur if the software is reused in other circumstances.

An example’of a change in the pattern of usage is this: An organization logs visitors to its buildings by recprding

their names and national identity numbers or social security numbers in a database. Of course, some visitors
legitimately don’t have or don’t know their social security number, so the receptionists enter numbers to “make
the computer happy.” Receptionists at one building have adopted the convention of using the code “555-55-
5555” to designate children of employees. Receptionists at another building have used the same code to
designate foreign nationals. When the databases are merged, the children are reclassified as foreign nationals or
vice-versa depending on which set of receptionists are using the newly merged database.

ISO/IEC 2010 — All rights reserved 99

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

An example of an unanticipated change due to reuse is this: Suppose a software component analyzes radar data,
recording data every degree of azimuth from 0 to 359. Packets of data are sent to other components for
processing, updating displays, recording, and so on. Since all degree values are non-negative, a distinguished
value of -1 is used as a signal to stop processing, compute summary data, close files, and so on. Many of the
components are to be reused in a new system with a new radar analysis component. However the new
component represents direction by numbers in the range -180 degrees to 179 degrees. When an azimuth value of

accumuldted degrees on complete revolutions) bring -999 into the range of valid data.

Distinguighed values should be avoided. Instead, the software should be designed to use distinct variables tp

encode the desired out-of-type information. For example, the length of a character string might be’encoded in a

dope vector and validity of data entries might be encoded in distinct Boolean values.
7.5.4 [|Avoiding the vulnerability or mitigating its effects
End userd can avoid the vulnerability or mitigate its ill effects in the following ways;

se auxiliary variables (perhaps enclosed in variant records) to ent¢ede out-of-type information.

U
e Use enumeration types to convey category information. Do not-tely upon large ranges of integers, with
distinguished values having special meanings.

U

se named constants to make it easier to change distinguished values.
7.6 Memory Locking [XZX]

7.6.1 Description of application vulnerability

Sensitive |[data stored in memory that was not locked or that has been improperly locked may be written to pwap
files on d|sk by the virtual memory manager:

7.6.2 Cross reference

CWE:
591. S¢nsitive Data Storage’in Improperly Locked Memory
CERT C gyidelines: MEMO6-C

7.6.3 Mechanism of failure

Sensitive [data that is not kept cryptographically secure may become visible to an attacker by any of several

mechanisms. Some operating systems may Write memory to swap or page files that may be visible to an attacker.
Some operating systems may provide mechanisms to examine the physical memory of the system or the virtual
memory of another application. Application debuggers may be able to stop the target application and examine or
alter memory.

7.6.4 Avoiding the vulnerability or mitigating its effects

In almost all cases, these attacks require elevated or appropriate privilege.

100 © 1SO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

Softwa

ISO/IEC TR 24772:2010(E)

re developers can avoid the vulnerability or mitigate its ill effects in the following ways:

Remove debugging tools from production systems.
Log and audit all privileged operations.

Identify data that needs to be protected and use appropriate cryptographic and other data obfuscation

techniques to avoid keeping plaintext versions of this data in memory or on disk.
If the operating system allows, clear the swap file on shutdown.

fu
us

System
visible

7.7
7.7.1

The ap|
potent]
CPU. T

these rfesources.

7.7.2

CWE:
4

7.7.3

There
exhaug
insecu

Resource exhaustiefiissues are generally understood but are far more difficult to prevent. Taking advant

variou
resour
would

N(Ie: Several implementations of the POSIX MTOCK{) and the Microsoft Windows ViITtualLOCK

ctions will prevent the named memory region from being written to a swap or page file. However
hge is not portable.

s that provide a "hibernate" facility (such as laptops) will write all of physical memofry, to a file that
to an attacker on resume.

Resource Exhaustion [XZP]
Description of application vulnerability

plication is susceptible to generating and/or accepting an excessive number of requests that could
ally exhaust limited resources, such as memory, file system storage, database connection pool en
his could ultimately lead to a denial of service that could prevent any other applications from acce

Cross reference

0. Resource Exhaustion

Mechanism of failure

hre two primary failures asseciated with resource exhaustion. The most common result of resourg
tion is denial of servige:\\In some cases an attacker or a defect may cause a system to fail in an uns
e fashion by causing.an application to exhaust the available resources.

entry padints, an attacker could craft a wide variety of requests that would cause the site to consu
ces. Database queries that take a long time to process are good DoS (Denial of Service) targets. An
puily have to write a few lines of Perl code to generate enough traffic to exceed the site's ability to

Q)

such

may be

ries, or
ssing

e
afe or

ge of
me
attacker
keep up.

This would errectively prevent authorized users from using the site at all.

Resources can be exhausted simply by ensuring that the target machine must do much more work and consume

more resources to service a request than the attacker must do to initiate a request. Prevention of these attacks

requires either that the target system either recognizes the attack and denies that user further access for a given

amount of time or uniformly throttles all requests to make it more difficult to consume resources more quickly

than they can again be freed. The first of these solutions is an issue in itself though, since it may allow attackers to

prevent the use of the system by a particular valid user. If the attacker impersonates the valid user, he may be

ISO/IEC 2010 — All rights reserved

101

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

able to prevent the user from accessing the server in question. The second solution is simply difficult to effectively
institute and even when properly done, it does not provide a full solution. It simply makes the attack require more
resources on the part of the attacker.

The final concern that must be discussed about issues of resource exhaustion is that of systems which "fail open."
This means that in the event of resource consumption, the system fails in such a way that the state of the system
— and possibly the security functionality of the system — are compromised. A prime example of this can be
found in old switches that were vulnerable to "macof" attacks (so named for a tool developed by Dugsong). These

attacks flpoded a switch with random IP and MAC address combinations, therefore exhausting the switch's cache,
which held the information of which port corresponded to which MAC addresses. Once this cache was-exhausted,

the switch would fail in an insecure way and would begin to act simply as a hub, broadcasting all traffic on gl
ports and allowing for basic sniffing attacks.

7.7.4 Avoiding the vulnerability or mitigating its effects

Software|developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Implement throttling mechanisms into the system architecture. The pest'protection is to limit the amount
resources that an application can cause to be expended. A strafg-authentication and access contjrol
odel will help prevent such attacks from occurring in the first-place. The authentication application
should be protected against denial of service attacks as much as possible. Limiting the database access,
perhaps by caching result sets, can help minimize the resources expended. To further limit the potegntial
for a denial of service attack, consider tracking the rate of requests received from users and blockinjg

—

puests that exceed a defined rate threshold.

[)
m

hsure that applications have specific limits of‘scale placed on them, and ensure that all failures in

-

bsource allocation cause the application toifail safely.
7.8 Injection [RST]

7.8.1 Description of application vulnerability

Injection problems span a wide fange of instantiations. The basic form of this weakness involves the softwafe
allowing {njection of additional)data in input data to alter the control flow of the process. Command injectipn

problemd are a subset of injection problem, in which the process can be tricked into calling external procesges of
an attacker’s choice through the injection of command syntax into the input data. Multiple

leading/imternal/trailing special elements injected into an application through input can be used to comprommise a
system. As data {s parsed, improperly handled multiple leading special elements may cause the process to tpke
unexpected'actions that result in an attack. Software may allow the injection of special elements that are non-

typical but equivalent to typical special elements with control implications. This frequently occurs when the
product has protected itself against special element injection. Software may allow inputs to be fed directly into
an output file that is later processed as code, such as a library file or template. Line or section delimiters injected
into an application can be used to compromise a system.

Many injection attacks involve the disclosure of important information — in terms of both data sensitivity and
usefulness in further exploitation. In some cases injectable code controls authentication; this may lead to a
remote vulnerability. Injection attacks are characterized by the ability to significantly change the flow of a given

102 © ISO/IEC 2010 - All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

process, and in some cases, to the execution of arbitrary code. Data injection attacks lead to loss of data integrity

in nearly all cases as the control-plane data injected is always incidental to data recall or writing. Often the actions

performed by injected control code are not logged.

SQL injection attacks are a common instantiation of injection attack, in which SQL commands are injected into

input to effect the execution of predefined SQL commands. Since SQL databases generally hold sensitive data, loss

of confidentiality is a frequent problem with SQL injection vulnerabilities. If poorly implemented SQL commands
are used to check user names and passwords, it may be possible to connect to a system as another user with no

previo
change
possib
SQL inj

Injecti
issue t
datain
in thro
involve
parsed
and us
remote

7.8.2

CWE:

74.
74.
78.
9.
91.

92

95.
97.
94.
99.

14
14

Is knowledge of the password. If authorization information is held in a SQL database, it may be po

this information through the successful exploitation of the SQL injection vulnerability. Just as it m|
e to read sensitive information, it is also possible to make changes or even delete this information
ection attack.

n problems encompass a wide variety of issues — all mitigated in very different ways. The most i
b note is that all injection problems share one thing in common — they allow(for the injection of ¢

ugh legitimate data channels, using no other mechanism. While bufferoverflows and many other
the use of some further issue to gain execution, injection problems.need only for the data to be

Many injection attacks involve the disclosure of important information in terms of both data sen
bfulness in further exploitation. In some cases injectable code-controls authentication, this may lez
vulnerability.

Cross reference

Failure to Sanitize Data into a Different Plane ('Injection')

Failure to Resolve Equivalent Special Elements into a Different Plane

Failure to Sanitize Data into an @S.Command (aka ‘OS Command Injection’)

Failure to Sanitize Data into LDAP Queries (aka ‘LDAP Injection’)

XML Injection (aka Blind XPath Injection)

. Custom Special Character Injection

Insufficient Contrglhof Directives in Dynamically Code Evaluated Code (aka 'Eval Injection')
Failure to Sanitize)Server-Side Includes (SSI) Within a Web Page

Insufficient €entrol of Filename for Include/Require Statement in PHP Program (aka ‘PHP File Inc
Insufficient-Control of Resource Identifiers (aka ‘Resource Injection’)

4. Faillire'to Sanitize Line Delimiters

5.<Faijllre to Sanitize Section Delimiters

5sible to
@y be
with a

mportant
bntrol

to the user controlled data. This means that the execution of the process(may be altered by sending code

flaws

sitivity
dtoa

usion’)

1

tFaitureto Sanitize viuttipte teading - SpeciatEtlements

163. Failure to Sanitize Multiple Trailing Special Elements

165. Failure to Sanitize Multiple Internal Special Elements

166. Failure to Handle Missing Special Element

167. Failure to Handle Additional Special Element

168. Failure to Resolve Inconsistent Special Elements
564. SQL Injection: Hibernate

CERTC

guidelines: FIO30-C

ISO/IEC 2010 — All rights reserved

103

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

ISO/IEC TR 24772:2010(E)

7.8.3 Mechanism of failure

A software system that accepts and executes input in the form of operating system commands (such as
system(), exec(), open()) could allow an attacker with lesser privileges than the target software to e

xecute

commands with the elevated privileges of the executing process. Command injection is a common problem with

wrapper programs. Often, parts of the command to be run are controllable by the end user. If a malicious user

injects a character (such as a semi-colon) that delimits the end of one command and the beginning of anoth
may then be able to insert an entirely new and unrelated command to do whatever he pleases.

er, he

Dynamicglly generating operating system commands that include user input as parameters can lead to tom
injection pttacks. An attacker can insert operating system commands or modifiers in the user input that can

the requdst to behave in an unsafe manner. Such vulnerabilities can be very dangerous and lead\todata and

system cgmpromise. If no validation of the parameter to the exec command exists, an attacker\can execute

command on the system the application has the privilege to access.

There arg two forms of command injection vulnerabilities. An attacker can change'the command that the
program pxecutes (the attacker explicitly controls what the command is). Alteraatively, an attacker can chg

means).

mand
cause

any

nge

en:

er

bduct
f

example, the program may give the attacker the ability to overwrite the specified file, run with a

configuration controlled by the attacker, or transmit sensitive information to a third-party server. N

ote:

Resource injection that involves resources stored on the file system goes by the name path manipulation

and is reported in separate category. See Path Traversal [EWR] description for further details of this

vulnerability. Allowing user input to control resource identifiers may enable an attacker to access or

modify otherwise protected system resources.

104 © ISO/IEC 2010 - All rights reserved

https://iecnorm.com/api/?name=decf19c0f7e79bbfc2f0561ca2cd6009

