
INTERNATIONAL
STANDARD

ISO/IEC
14576

First edition
1999-12

Information technology –
Synchronous split transfer type system bus
(STbus) – Logical layer

Technologies de l'information –
Bus de système de transfert de fente synchrone (STbus) –
Couche logique

Reference number
ISO/IEC 14576:1999(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

INTERNATIONAL
STANDARD

ISO/IEC
14576

First edition
1999-12

Information technology –
Synchronous split transfer type system bus
(STbus) – Logical layer

Technologies de l'information –
Bus de système de transfert de fente synchrone (STbus) –
Couche logique

PRICE CODE

 ISO/IEC 1999

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office • Case postale 56 • CH-1211 Genève 20 • Switzerland

X
For price, see current catalogue

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– ii – 14576 © ISO/IEC:1999(E)

Contents
1. Overview .. 1

1.1 Scope ... 1

1.2 Applicability .. 1

2. Definitions .. 3

2.1 Explanation of Terms .. 3

2.2 Notation ... 5

3. Interface Specifications .. 6

3.1 Interface Signals .. 6

4. Bus Operations ... 11

4.1 Protocol for Basic Operations .. 11

4.2 Transfer Protocol ... 16

4.2.1 Bus operation types ... 16

4.2.2 Command format .. 16

4.2.3 Transfer sequence ... 25

4.3 Arbitration ... 27

4.4 Status Reports .. 27

4.5 Data Transfer ... 29

4.5.1 Memory access (write) .. 29

4.5.2 Memory access (read) ... 35

4.5.3 Control space access (write) ... 38

4.5.4 Control space access (read) ... 40

4.5.5 Message transfer .. 42

4.5.6 Control register access (write) .. 44

4.5.7 Control register access (read) .. 46

4.6 Lock Operations .. 48

4.7 Cache-related Operations ... 50

4.7.1 Cache invalidation .. 50

4.7.2 Retry indication ... 53

4.7.3 Copyback and steal operations after retry indication 55

4.7.4 Steal inhibit operation ... 57

4.8 Error Handling ... 59

4.8.1 Handling errors notified in answer ... 59

4.8.2 Other error detection ... 61

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – iii –

5. Cache Coherency Control .. 62

5.1 Cache Control Methods ... 62

5.2 Cache Block Attributes .. 62

5.3 Operations on System Bus ... 63

5.4 Retry Indication ... 65

5.5 Steal Operation .. 66

5.6 Cache Data Management and State Transition .. 67

5.6.1 Write-through cache .. 67

5.6.2 Copyback cache .. 70

5.7 Notes on Memory Access .. 75

6. Functions for Enhanced Reliability .. 76

6.1 Redundancy ... 76

6.2 Detecting Faults ... 77

6.3 Preventing Faults from Spreading ... 77

6.4 Supporting Fault Handling and Diagnosis .. 78

Annex A (informative) Performance (Estimated) .. 79

Annex B (informative) Return of answer in a lock transfer ...80

Annex C (informative) Lock transfer and write back of copyback cache81

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– iv – 14576 © ISO/IEC:1999(E)

Figures

Figure 1 - STbus Applications ...2

Figure 2 - Connection interface between function units (basic pattern)7

Figure 3 - Concept of bus operation protocol (for 1-cycle or 2-cycle transfer:

8-byte bus width specification, write operation) ..11

Figure 4 - Concept of bus operation protocol (for transfer of 3-cycles or more:

8-byte bus width specification, read operation) ..13

Figure 5 - Concept of bus operation protocol (for 1-cycle or 2-cycle transfer:

4-byte bus width specification, write operation) ..15

Figure 6 - Pipeline operation..20

Figure 7 - BCT field...21

Figure 8 - RA and byte alignment..23

Figure 9 a) - One-word memory write (no-answer transaction)31

Figure 9 b) - One-word memory write (basic transaction)...32

Figure 9 c) - n-word memory write (no-answer transaction) ...33

Figure 9 d) - n-word memory write (basic transaction) ...34

Figure 10 a) - One-word memory read...36

Figure 10 b) - n-word memory read...37

Figure 11 - n-word write: control space access..39

Figure 12 - n-word read: control space access ...41

Figure 13 - n-word message transfer..43

Figure 14 - One-word write: control register access ..45

Figure 15 - One-word read: control register access ...47

Figure 16 - Bus lock transfer..49

Figure 17 - Cache invalidation...52

Figure 18 - Retry indication ...54

Figure 19 - Copyback and steal operations after retry indication56

Figure 20 - Steal inhibit operation ...58

Figure 21 - Error report in answer transaction when DUT detects error60

Figure 22 - When function unit (0#) detects time out..61

Figure 23 - Relation between CPU operation and commands on system bus64

Figure 24 - STbus write-through cache coherency control protocol..............................69

Figure 25 - STbus copyback cache coherency control protocol74

Figure A.1 - STbus performance (in 8-byte bus width and 32-bit addressing mode)....79

Figure B.1 - Example of dead lock problem..80

Figure C.1 - Example of lock transfer to EM cache data...81

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – v –

Tables

Table 1 - Basic Interface Signals (function unit interfaces other than bus handler)6

Table 2 - Optional Interface Signals (function unit interfaces other than bus handler) ...6

Table 3 - Command Format for Information Transfer Bus..17

Table 4 - OPT Code Definitions ..18

Table 5 - M Bit Definition ...19

Table 6 - Message Sequence ..22

Table 7 - Answer Code Definition ...28

Table 8 - System Bus Command Types...63

Table 9 - Semantics of Discrepancy between Base and Spare Signals76

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– vi – 14576 © ISO/IEC:1999(E)

INFORMATION TECHNOLOGY –

SYNCHRONOUS SPLIT TRANSFER TYPE
SYSTEM BUS (STbus) –

LOGICAL LAYER

FOREWORD

ISO (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized system for worldwide
standardization. National bodies that are members of ISO or IEC participate in the
development of International Standards through technical committees established by
the respective organization to deal with particular fields of technical activity. ISO and
IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work.

In the field of information technology, ISO and IEC have established a joint technical
committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint
technical committee are circulated to national bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the national bodies casting
a vote.

International Standard ISO/IEC 14576 was prepared by subcommittee 26:
Microprocessor systems, of ISO/IEC joint technical committee 1: Information
technology.

International Standards are drafted in accordance with the rules given in the ISO/IEC
Directives, Part 3.

Annexes A, B and C are for information only.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 1 –

INFORMATION TECHNOLOGY –

SYNCHRONOUS SPLIT TRANSFER TYPE
SYSTEM BUS (STbus) –

LOGICAL LAYER

1. Overview

1.1 Scope

This International Standard specifies the logical specifications of STbus which is a high-
performance and highly reliable system bus. STbus adopts a synchronous transfer method with a
high-speed clock and a split transfer method enabling to minimize bus holding time during one
bus operation and to use a bus efficiently.

The contents given in this specifications are as follows:

a) System bus interface signal provisions;

b) Bus operations and transfer protocol for each bus operation;

c) Copyback cache coherency control for maintaining consistency between a shared memory and
a cache memory of each processor in a multiprocessor system;

d) Fault detection function using parity check and duplex configuration for control signals.

1.2 Applicability

This International Standard is Applicable to a high-performance system bus or an I/O bus in a
multiprocessor system. Typical STbus applications are indicated in Figure 1:

a) A System bus and an I/O bus in a TCMP system;

b) A System bus in an LCMP system.

- TCMP: tightly coupled multiprocessor system
(A system consisting of two or more processors sharing the same memory, with the
entire system controlled by one OS.)

- LCMP: loosely coupled multiprocessor system
(A system in which each processor is connected by a shared memory or other medium,
with each processor operated by an individual OS.)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 2 – 14576 © ISO/IEC:1999(E)

Figure 1 - STbus Applications

CPU CPU
Shared
memory

System
bus

I/O bus

I/OI/O

TCMP
system

Processor

Local memory

LCMP
system

Local memory

CPUCPU Local I/O Local I/O

System bus

Processor Processor

Processor

 .

 .

 .

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 3 –

2. Definitions

2.1 Explanation of Terms

For the purposes of this International Standard, the following terms and definitions apply.

1) Answer transaction

An information transfer operation by which a function unit receiving a command returns
answer information, to notify the unit issuing the command that the command has been
completed (in some cases the requested data is appended) and to indicate status information.

2) Basic signal

Those bus interface signals that must be implemented in every STbus system, and thus for
which compatibility is assured among different systems.

3) Block

The minimum unit registered in cache memory. In STbus this is limited to 32 bytes.

4) Bus handler (BH)

A concentrated bus control mechanism for sorting out competing bus requests from different
function units, selecting one of the requests, and granting the bus right to that function unit.

5) Bus master

A function unit that has the bus right (a grant signal has been asserted) and is transferring
information on the bus.

6) Bus slave

A function unit to which information is being transferred by the bus master.

7) Bus snoop

Monitoring of the bus for read operations from external memory and write operations to
external memory.

8) Cache invalidation

A request to invalidate a block in cache memory. For example, when a write access is made
to a Shared & Unmodified (SU) area, this is used to invalidate the same area in another
cache.

9) CPU

A central processing element with functions for interpreting and executing instructions. In
these specifications, cache memory is included with the CPU.

10) Copyback scheme

A cache updating method in which data written by the processor or instruction execution
part is updated only in the cache, without being reflected directly in memory. The copyback

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 4 – 14576 © ISO/IEC:1999(E)

cache supported in STbus has the following three internal states: Invalid state (I), Shared &
Unmodified state (SU), Exclusive & Modified state (EM).

11) DUT (Destination Unit)

A function unit performing an answer transaction.

12) Exclusive & Modified state (EM)

An internal state in a copyback cache, whereby the only place in the system an access area is
registered is in cache memory, and the contents are not the same as shared memory. In this
state, only the cache has been updated.

13) Function unit

A hardware unit connected to the bus and having a mechanism for bus interface control.
Normally one function unit consists of one board.

14) I/O adapter

A function unit that controls I/O devices under control of a processor.

15) Invalid state (I)

A state in which an area accessed by the processor is not registered in cache memory.

16) Modified read command

A command issued to the system bus by a copyback cache memory when a write access by
the processor results in a write miss.

17) Optional signal

Those bus interface signals that users are free to adopt or not in system implementation.

18) Order transaction

An information transfer operation for sending a command and requesting processing by
another function unit.

19) Parity

When not otherwise noted in these specifications, parity is always odd. Here odd parity
means that when a given signal (e.g., 8 bits) is augmented by a parity bit (e.g., 8 + 1 = 9
bits), then if the sum of 1-bits in the augmented set is an even number (including 0) an error
is detected.

20) Processor

A function unit with the capability of executing instructions and controlling the various I/O
adapters. Processor consists of CPU and memory in general.

21) Read hit/read miss

When an instruction or operand to be read by the processor is registered in cache memory,
this is called a read hit. If not, it is a read miss.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 5 –

In the case of a read miss, if the object of the read is cacheable, one block containing the
object is newly registered in the cache.

22) Retry indication

The temporary suspension of access by external devices to a copyback cache area that has
been updated without the change having been reflected in main memory.

23) Shared & Unmodified state (SU)

An internal state in a write-through or copyback cache, whereby an access area is registered
in a cache and has the same contents as shared memory. Sharing by more than one cache is
possible.

24) SUT (Source Unit)

A function unit performing an order transaction.

25) Write hit/write miss

If an area to be written by the processor is registered in cache memory, this is called a write
hit. If not, it is a write miss.

In the case of a write-through cache, the write data is immediately reflected in shared
memory.

If a copyback cache scheme is used, in the case of a write hit the write data is reflected in the
cache only. If a write miss occurs, one block of the write area is read from shared memory
and newly registered, then the write data is written over that area in the cache only.

26) Write-through scheme

A cache updating method in which data written by the processor or instruction execution
part is reflected directly in memory. The internal states are: Invalid state (I), Shared &
Unmodified state (SU).

2.2 Notation

The following symbols and other notation are used in these specifications.

- Function unit numbers are indicated by (#n), and control signals to each unit are written as
[signal line name + (function unit number)], e.g., RQL*(#n), GR*(#n).

- When the values of control signals are indicated, the following notation is used.

- When indicating the logical value of a signal line: 1 and 0 are used, with 1 meaning assert
and 0 meaning negate.

- When indicating the actual value on a signal line: "H" and "L" are used, with "H"
meaning high and "L" meaning low signal potential.

- Hexadecimal notation in these specifications is indicated by H'## (e.g., H'FF, H'00).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 6 – 14576 © ISO/IEC:1999(E)

3. Interface Specifications

3.1 Interface Signals

The STbus basic interface signals are listed in Table 1, as seen from one function unit.

In this table, RQL*, RQH*, GR*, and ET* are signals connected individually to each function
unit.

Table 1 - Basic Interface Signals (function unit interfaces other than bus handler)

No. Signal name Count Functional category Connection type

1 RQL* (Request low) 1

2 RQH* (Request high) 1 Arbitration control Individually

3 GR* (Grant) 1 connected

4 ET* (End of bus transaction) 1

5 BS* (Bus transaction start) 1

6 BUR* (Burst) 1 Transfer control

7 CSP* (Control signal parity) 1

8 LCK* (Lock) 1 Bus connection

9 AD [00..63]* (Command/address/data) 64 Command/address/data

10 ADP [0..7]* (AD parity) 8

11 RTY* (Retry) 1 Cache coherency control

12 RST* (Reset) 1 Reset signal

13 CK (Clock) 1 Clock See Note 2.

Total number of signals 83

Note 1: A * after a signal name indicates negative logic.

Note 2: For clock connection, a connection configuration must be adopted that can guarantee
the skew specified in the physical specifications.

The optional interface signal lines as seen from one function unit are listed in Table 2. Since
these signals are optional, the system implementor can choose whether or not to use them.

Table 2 - Optional Interface Signals (function unit interfaces other than bus handler)

No. Signal name Count Functional category Connection type

14 LCKS* (Lock spare) 1 Transfer control

15 RTYS* (Retry spare) 1 Bus connection

16 STI* (Steal inhibit) 1 Cache coherency control

17 STIS* (Steal inhibit spare) 1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 7 –

Connection structure

Figure 2 - Connection interface between function units (basic pattern)

 BS*

 BUR*

 CSP*

 LCK*

 RTY*

 RST*

 AD[00...63]*

 ADP[0..7]*

 GR*(#0)

 GR*(#1)

 GR*(#n)

 RQL*

 ET*

 RQH*

 RQL*

 ET*

 RQH*

 RQL*

 ET*

 RQH*

(#n)

 (#1)

 (#0)

Bus handler
(BH)

n+1: Connected function unit count
CK signal: lndividual signal or bus signal
For clock connection, a connection configuration must be adopted
that can guarantee the skew specified in the physical specifications.

Clock generator

(CK)

 Function
 unit(#0)

Function
 unit(#1)

Function
 unit(#n). . . .

.

.

.

.

.

.

.

.
.
.

.

.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 8 – 14576 © ISO/IEC:1999(E)

Explanation of each signal

1) RQL* (Request low)

This signal is used by a source unit (SUT) to request the bus. Each unit asserts this signal
when performing an order transaction, for requesting the bus right from the bus handler. A
function unit for which the GR* signal is asserted, granting the right to use the bus, must
negate this signal.

This signal is notified to the bus handler by each function unit using individual lines.

This signal has a lower priority than that of RQH*, RQL* and RQH* cannot be asserted
simultaneously.

2) RQH* (Request high)

This signal is used by a destination unit (DUT) to request the bus. Each unit asserts this
signal when performing an answer transaction, in order to request the bus right from the bus
handler. A function unit for which the GR* signal is asserted, granting the right to use the
bus, must negate this signal.

This signal is notified to the bus handler by each function unit using individual lines.

This signal has a higher priority than that of RQL*, RQH* and RQL* cannot be asserted
simultaneously.

While a LCK* signal is asserted, the bus handler will not assert GR* in response to a RQL*
signal from another function unit. However, GR* will be asserted in response to RQH*, so
any unit is capable of executing an answer transaction.

3) GR* (Grant)

This signal is for granting the bus right to a bus master in response to a RQL* or RQH* bus
request signal. Only while this signal is asserted, a function unit enables bus drivers (Nos. 5
- 7, 9,10, in Table 1) and send information on the bus. This signal is supplied to each
function unit by the bus handler on individual lines.

4) ET* (End of bus transaction)

This signal is issued by the bus master to give advance notice of the end of transfer data.

This signal is negated two cycles prior to the actual end of a data transfer.

If this signal is not asserted at the same time as RQL* or RQH*, this is taken to mean that
the requested transaction is a one-cycle transfer.

For a transfer of two cycles or more, ET* is asserted at the same time as RQL* or RQH*.

This signal is notified to the bus handler by each function unit using individual lines.

5) BS* (Bus transaction start)

When a function unit that has obtained the bus right performs an order transaction or answer
transaction, this signal is asserted at the same time as the command or answer information is
sent on the bus, indicating to the destination function unit the start of transfer information.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 9 –

This signal is asserted only during the first bus cycle of an order transaction or answer
transaction.

When data is sent following the initial command or answer information, information receipt
must be performed at the initiative of the receiving function unit, using the BS* signal as a
reference.

6) BUR* (Burst)

This signal indicates burst transfer mode, consisting of two or more data transfer cycles.
The sending function unit asserts this signal, and while it is asserted the receiving function
unit continues to receive data.

This signal is negated one cycle prior to the end of data transfer. When the receiving
function unit detects the negation of this signal, it ends the receiving operation after one
cycle.

If a BS* signal is asserted and BUR* is not asserted, one-cycle transfer is indicated.

7) CSP* (Control signal parity)

This is a parity signal for the transfer control signals BS* and BUR*. It indicates odd parity.

8) LCK* (Lock)

This is a bus lock signal. It is asserted at the same time as the SUT starts an order
transaction, and is negated when the SUT itself indicates the end of a transaction.

Split transfer is the main method adopted for STbus, but interlock transfer using this signal
is also possible.

9) AD [00..63]* (Command / address / data 00-63)

This is a 64-bit two-way information transfer bus for time division transfer of control
information, address information, and data.

10) ADP [0..7]* (AD parity 0-7)

These are parity signals for each byte of AD[00-63]* . They indicate odd parity.

11) RTY* (Retry)

This signal is used for coherency control when a copyback cache scheme is used in a TCMP
system. When this signal is asserted, the bus master must retry the current transaction. See
5.4 Retry Indication for details.

12) RST* (Reset)

A function unit connected to STbus uses this signal to indicate a reset to other function
units. While this signal is asserted, reset is in effect. Assertion time of this signal is
specified to be 5 µs-10 µs. Assertion timing shall be synchronized with the bus clock.

13) CK (Clock)

This is the STbus common clock signal. Bus operations are synchronized with the falling
edge of this signal.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 10 – 14576 © ISO/IEC:1999(E)

14) LCKS*(Lock spare)

This is a spare LCK* signal. When this signal is used, LCK* must also be used at the same
time. If either LCK* or this signal is asserted alone, the lock transfer is not effective. The
lock transfer is performed, only when both LCK* and this signal are asserted. This signal is
optional.

15) RTYS* (Retry spare)

This is a spare RTY* signal. When this signal is used, RTY* must also be used at the same
time. If either RTY* or this signal is asserted alone, the bus master must retry the current
transaction. This signal is optional.

16) STI* (Steal inhibit)

This is a signal used in copyback cache coherency control. It is connected only between
function units. This signal is optional.

When this signal is asserted, the bus master prohibits a steal operation during copyback of
data concerned. See 5.5 Steal Operation for details.

17) STIS* (Steal inhibit spare)

This is a spare STI* signal. When this signal is used, STI* must also be used at the same
time. If either STI* or this signal is asserted alone, the bus master prohibits a steal operation
during copyback of data concerned. This signal is optional.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 11 –

 Co D0

 A D1

4. Bus Operations

4.1 Protocol for Basic Operations

Examples of basic STbus operations (one-cycle transfer and two-cycle transfer) are given here,
along with an explanation of the operations.

Figure 3 - Concept of bus operation protocol (for 1-cycle or 2-cycle transfer:
8-byte bus width specification, write operation)

All function units and the bus handler operate in synchronization with the common clock CK.

[1] In the figure above, function unit (#0) performs a two-word information transfer to
function unit (#1). First, function unit (#0) asserts a bus request signal RQL*(#0),
requesting the bus handler to grant the bus right. At the same time, since the number of
words to be transferred is two, it also asserts an end-of-bus-transaction signal ET*(#0).

[2] If the RQL*(#0) signal can be accepted, the bus handler asserts a bus grant signal
GR*(#0) to function unit (#0), granting it the bus right.

[3] Function unit (#0), obtaining the bus right, negates the RQL*(#0) signal upon the
assertion of GR*(#0).

[4] At the same time as the above, function unit (#0) upon receiving GR*(#0) validates the
information transfer bus and sends information on the bus. In the initial cycle of
information transfer, it asserts a BS* transfer control signal.

.

..

.

.

(Unit#0→BH) RQH* (#1)
[3]

[8]
[1]

(Unit#1→ BH)

[12]
[6]

[7] (BH→ #0) GR* (#1) (BH→ #1) [2]

 [10]

 [9]

 Clock signal CK

 Bus request signal

 RQL* (#0)

 End-of-bus-transaction

 signal ET* (#0)

 Bus grant signal

 GR* (#0)

 Transfer control signals

 Data transfer bus AD[00..31]*
 (8 bytes) AD[32..63]*

 BS*

 BUR*

 [4]

 [5] Unit #0
 ↓

 Unit #1 CAW

 

 Unit #1
 ↓

 Unit #0

 BS*
[11]

Time

Abbreviations:
Co: Order command Di: Data A: Address CAW: Answer command BH: Bus handler
[1]-[12]: Change point of each signal line (numbers correspond to explanation below)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 12 – 14576 © ISO/IEC:1999(E)

[5] Since in this example a two-word information transfer is performed, a BUR* signal is
asserted at the same time as BS*, informing the other function units of the start of burst
transfer. The BUR* signal is negated one cycle prior to the end of the transaction.

[6] The ET*(#0) asserted at the same time as GR*(#0) is negated two cycles prior to the end
of the transaction, notifying the bus handler in advance that the bus is about to be freed.

[7] When the bus handler detects the negation of ET*(#0) it negates GR*(#0).

[8] When answer information (one word) is returned in response to the information from
function unit (#0), function unit (#1) asserts a bus request signal RQH*(#1), requesting the
bus handler to grant the bus right. As long as the number of words to be transferred in the
answer is one, ET*(#1) is not asserted.

[9] If the RQH*(#1) signal can be accepted, the bus handler asserts a bus grant signal
GR*(#1) to function unit (#1).

[10] Function unit (#1), obtaining the bus right, negates the RQH*(#1) signal upon the
assertion of GR*(#1).

[11] At the same time as the above, function unit (#1) upon receiving GR*(#1) validates the
information transfer bus and sends information on the bus. In the initial cycle of
information transfer, it asserts a BS* transfer control signal. Since the number of words to
be transferred in the answer is one, BUR*(#1) is not asserted.

[12] Since ET*(#1) is negated, the bus handler negates GR*(#1) in one-word transfer.

Since a split transfer method is adopted, the bus can be used for transactions between other
function units during steps [7] to [9] above.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 13 –

  D1 Dn-2 Dn

CAW D0 . Dn-3 Dn-1

 A

Figure 4 – Concept of bus operation protocol (for transfer of 3-cycles or more:
8-byte bus width specification, read operation)

[1] The figure above shows one-word information transfer between function unit (#0) and
function unit (#1). First, function unit (#0) asserts a bus request signal RQL*(#0),
requesting the bus handler to grant the bus right. Since the number of words to be
transferred is one, ET*(#0) is not asserted.

[2] If the RQL*(#0) signal can be accepted, the bus handler asserts a bus grant signal
GR*(#0) to function unit (#0), granting it the bus right.

[3] Function unit (#0), obtaining the bus right, negates the RQL*(#0) signal upon the
assertion of GR*(#0).

[4] At the same time as the above, function unit (#0) upon receiving GR*(#0) validates the
information transfer bus and sends information on the bus. In the initial cycle of
information transfer, it asserts a BS* transfer control signal. Since the number of words to
be transferred in this example is one, BUR*(#0) is not asserted.

[5] Since RQL*(#0) and ET*(#0) are negated, the bus handler negates GR*(#0) in one-word
transfer.

[6] When answer information of three words or more is returned in response to the
information from function unit (#0), function unit (#1) asserts a bus request signal
RQH*(#1), requesting the bus handler to grant the bus right. In a multi-word answer,
ET*(#1) must be asserted at the same time.

[7] If the RQH*(#1) signal can be accepted, the bus handler asserts a bus grant signal
GR*(#1) to function unit (#1).

[8] Function unit (#1), obtaining the bus right, negates the RQH*(#1) signal upon the
assertion of GR*(#1).

 BS*

ET* (#1)

RQH* (#1)

GR* (#1) [7]

 Clock signal CK

 Bus request signal

 RQL* (#0)

 End-of-bus-transaction

 signal ET* (#0)

 Bus grant signal

 GR* (#0)

 Transfer control signals

 Data transfer bus AD[00..31]*
 (8 bytes) AD[32..63]*

.

.

[3] [8]

[1]
(Unit#1→ BH)

[12]

[6]

 [2]

 [10]

 [9]
 BS*

 [4]

 [5]

 Unit #0
 ↓

 Unit #1

 Unit #1
 ↓

 Unit #0

[11]

. Time

.

.

BUR*

.

.

.

.

.

Co

..

.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 14 – 14576 © ISO/IEC:1999(E)

[9] At the same time as the above, function unit (#1) upon receiving GR*(#1) validates the
information transfer bus and sends information on the bus. In the initial cycle of
information transfer, it asserts a BS* transfer control signal.

[10] Since in this example three words or more of information are transferred, a BUR* signal is
asserted at the same time as BS*, informing the other function unit of the start of burst
transfer. The BUR* signal is negated one cycle prior to the end of the transaction.

[11] The ET*(#1) asserted at the same time as GR*(#1) is negated two cycles prior to the end
of the transaction, notifying the bus handler in advance that the bus is about to be freed.

[12] The bus handler monitors the bus for negation of the ET*(#1) signal, and when this is
detected it negates GR*(#1).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 15 –

(Unit#0→BH) RQH* (#1)

 Clock signal CK

 Bus request signal

 RQL* (#0)

 End-of-bus-transaction

 signal ET* (#0)

 Bus grant signal

 GR* (#0)

 Transfer control signals

 Data transfer bus AD[00..31]*
 (4 bytes)

The operation when a 4-byte bus width is used (one-cycle or two-cycle transfer) is shown below for
reference.

Figure 5 - Concept of bus operation protocol (for 1-cycle or 2-cycle transfer:
4-byte bus width specification, write operation)

When the width of the information bus is 4 bytes, the operation by which function unit (#0)
sends two-word information to function unit (#1) is essentially the same as with an 8-byte bus.
Since, however, the bus width is 4 bytes, the information that is sent on an 8-byte bus in one
cycle requires two cycles on a 4-byte bus, as shown in the figure above.

The explanation of each signal change point is the same as for the 8-byte specification.

[6]

.

..

.

.

[3]

[8]

[1]

(Unit#1→ BH)

[12]

[7] GR* (#1) [2]

 [10]

 [9]

 BS*

 BUR*

 [4]

 [5]
 Unit #0
 ↓

 Unit #1 Co A D0 D1 CAW

 Unit #1
 ↓

 Unit #0

 BS*
[11]

Time

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 16 – 14576 © ISO/IEC:1999(E)

4.2 Transfer Protocol

4.2.1 Bus operation types

The bus operations on STbus can be classified broadly into four types; memory access, control
space access, message transfer and control register access.

1) Memory access

This is a bus operation in which a function unit performs a read or write operation in shared
memory or in the local memory of any other function unit. In the basic bus specification
any transfer byte size can be designated up to the maximum of 256 bytes.

2) Control space access

This is a bus operation in which a program running on a function unit directly reads or
writes data mapped to the control space of any other function unit. In the basic bus
specification any transfer unit byte size can be designated up to the maximum of 256 bytes.

3) Message transfer

This is a bus operation in which a function unit sends a message to any other function unit.

4) Control register access

This is a bus operation in which a program running on a function unit directly reads or
writes up to 8 bytes in the control registers (up to 256) of any other function unit.

4.2.2 Command format

The information transfer bus is 64 bits wide (or 32 bits), and adopts a big endian. The bit order
is AD [00..63]* (or AD [00..31]*) starting from the MSB.

The information transfer bus is divided into byte units, in the order from byte 0 to byte 7 starting
from the MSB.

Information transferred on the bus can be classified broadly into the four types commands,
addresses, data, and message communication operands.

In information transfer, the commands are sent first to the destination unit. The format is shown
in Table 3. Although not indicated specifically in the table, a single parity bit is attached to the
above byte units.IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 14

57
6:1

99
9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 17 –

Table 3 - Command Format for Information Transfer Bus

 Byte 0 Byte 1 Byte 2 Byte 3

Bus Operation OPT
0

OPT
1

OPT
2

00 01.............07 08 09.............15 16 17 18 19 20 21 22 23 24.............31

Memory access 0 BMID 0 BSID 0 BT R/W A64 M NAT AID BCT

Control space
access

0 BMID 0 BSID 1 BT R/W A64 0 NAT AID BCT

Message
transfer

0 BMID 1 BSID 0 BT MD SQ NAT AID BCT

Control register
access

0 BMID 1 BSID 1 BT R/W BCT AID RA

Reserved 1 BMID 0 BSID 0 BT * * * * * * * * * * * * * *

Reserved 1 BMID 0 BSID 1 BT * * * * * * * * * * * * * *

Reserved 1 BMID 1 BSID 0 BT * * * * * * * * * * * * * *

Answer 1 BMID 1 BSID 1 BT ROPT RNAT RAID ANS

Notation:

OPT: Operation Type BCT: Byte Count

BMID: Bus Master ID MD: Mode

BSID: Bus Slave ID SQ: Sequence

BT: Bus Type RA: Register Address

R/W: Read/Write ROPT: Return Operation Type

A64: 64-bit Address Space RNAT: Return NAT

M: Modify RAID: Return Access ID

NAT: No-Answer Transaction ANS: Answer code

AID: Access ID

 *: Reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 18 – 14576 © ISO/IEC:1999(E)

1) Operation type codes

Commands are either for order transactions, from SUT to DUT, or for answer transactions, from
DUT to SUT. There are eight command types, including Reserved. Together these are called
operation types, and are defined in a 3-bit OPT (operation type) consisting of bit 0 of byte 0, bit
8 of byte 1, and bit 16 of byte 2.

The OPT codes are given in Table 4.

Table 4 - OPT Code Definitions

OPT
0 1 2

Operation type

0 0 0 Memory Access

0 0 1 Control Space Access

0 1 0 Message Transfer

0 1 1 Control Register Access

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 Answer

2) ID (Identifier) and Bus Type (BT)

In an order transaction, a BMID (Bus Master Identifier) and BSID (Bus Slave Identifier) are sent
in bytes 0 and 1 of the information transfer bus.

Bit 17 of byte 2 indicates the BT (Bus Type).

The semantics of each field are as follows.

BMID (Bus Master Identifier):
Function unit ID of the bus master, consisting of 7 bits.

BSID (Bus Slave Identifier):
Function unit ID of the bus slave, consisting of 7 bits.

BT (Bus Type):
0: 4-byte bus 1: 8-byte bus

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 19 –

3) Memory access

The semantics of each field are as follows.

R/W (Read/Write):
0: Write operation by SUT to DUT
1: Read operation by SUT from DUT

A64 (64-bit Address Space)
0: 32-bit address space
1: 64-bit address space

M (Modify):
This signal is used in cache coherency control in a TCMP configuration. It is used in
combination with R/W, as specified in Table 5.

Table 5 - M Bit Definition

R/W M Bus operation

0 0 Memory Write Operation

1 Cache Invalidation

1 0 Memory Read Operation

1 Memory Read Operation and Cache Invalidation

When the R/W field is 0 and the M field is 1, the BCT field is invalid, so that only
commands and addresses can be transferred on the bus. Write operations to memory are
not performed. If a cache hit occurs in another function unit, the cache is invalidated.

Note: If copyback cache is not supported, the M field is cleared to 0.

AID (Access Identifier):
An identifier used when multiple access is made to memory. Applications include
simultaneous operation of multiple DMA ports, or pipeline operation of a single DMA
port.
An example of multiple memory access operation in a split transfer bus is shown in
Figure 6 below.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 20 – 14576 © ISO/IEC:1999(E)

 Processor
 board

 Shared memory
 board

Figure 6 - Pipeline operation

NAT (No-Answer Transaction):
This indicates that the transaction to follow is a no-answer transaction. When this bit is set
in an order transaction, the bus slave does not perform an answer transaction in response.
However, if an error occurs in the order transaction, an answer to indicate the error is
returned.

0: Transaction with answer returned

1: Transaction without answer returned

BCT (Byte Count):

This indicates the number of bytes of transfer data sent from SUT to DUT or demanded
from DUT by SUT. The number of transfer bytes are defined as shown in Figure 7 a). Up
to 256 bytes can be sent consecutively in one bus operation. When t="00", the number of
valid bytes transferred on the bus must equal the contents of n plus 1. For example, t=
"00" & n="00000" means 1-byte transfer, while t="00" & n="11111" means 32 bytes
transfer.
Byte alignment in case of an 8-byte bus is realized using the lower 3 bits of the address and
the BCT contents. Starting from the byte position of the first word of data as determined
by the lower 3 address bits, the number of bytes as determined from BCT is the valid data.
If the address is 8n + 3 and BCT is t="00" & n="11111" & w="0" (32-byte transfer), the
valid data is as shown in Figure 7 b) below.

 I/O adapter board

 STbus

 Port 1 Port 2

 I/O BUS

 I/O Device 1 I/O Device 2

(Shared memory) (I/O adapter)

 Read order
 Port 1
 (AID=00)

 Read order
 Port 2
 (AID=01)

 Port 1

Answer data
(AID=00)

Answer data
(AID=01)

Port 2

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 21 –

Availabili ty of wrap around

 0: Unavailable
 1: Available

BCT field
(8 bits)

t n

00: Below 32 bytes
01: 64 bytes
10: 128 bytes
11: 256 bytes

No. of transfer bytes below
32 bytes (n+1 bytes)

a) BCT field definition

w

 1 bit 2 bits 5 bits

On the various data sent in a transfer operation, a correct parity must be attached even to
invalid data.

Note, however, that in case of w="1" (used on block size transfer in general) the
arrangement of data is wrapped around at the block boundary. When the address is 8n+3
and BCT is t="00" & n="11111" & w="1", the valid data is as shown in Figure 7 (c)
below.

byte position 0 1 2 3 4 5 6 7

1st data word I I I V
0

V1 V2 V3 V4

2nd data word V5 V6 V7 V8 V9 V10 V11 V12

3rd data word V13 V14 V15 V16 V17 V18 V19 V20

4th data word V21 V22 V23 V24 V25 V26 V27 V28

5th data word V29 V30 V31 I I I I I

Vi: Valid

I: Invalid

 b) BCT and byte alignment in case of w="0"

 byte position 0 1 2 3 4 5 6 7

1st data word V29 V30 V31 V
0

V1 V2 V3 V4

2nd data word V5 V6 V7 V8 V9 V10 V11 V12

3rd data word V13 V14 V15 V16 V17 V18 V19 V20

4th data word V21 V22 V23 V24 V25 V26 V27 V28

5th data word I I I I I I I I

Vi: Valid

I: Invalid

c) BCT and byte alignment in case of w="1"

Figure 7 - BCT field

block boundary

block boundary

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 22 – 14576 © ISO/IEC:1999(E)

4) Control space access

The semantics of each field are as given below.

R/W (Read/Write): same as memory access.

A64 (64-bit Address Space): same as memory access.

AID (Access Identifier): same as memory access.

NAT (No-Answer Transaction): same as memory access.

BCT (Byte Count): same as memory access (including the relation between BCT and address).

5) Message transfer

The semantics of each field are as given below.

MD (Mode): Indicates the difference in message processing urgency.
 0: urgent message 1: normal message

SQ (Sequence): The message semantics are specified in Table 6 below.

Table 6 - Message sequence

SQ Meaning Explanation

20 21

0 0 Single Indicates that the message length is 256 bytes or less and the transaction
ends with one bus operation. The receiving unit upon accepting this bus
operation notifies the processor that message receipt is complete.

0 1 First Indicates the first bus operation when the message length exceeds 256
bytes. The receiving unit state is bus operation receive pending state.

1 0 Middle Indicates a bus operation continuing after a First or other Middle
operation. When Middle is received, the receiving unit state is next
message receive pending state. When the bus operation is received, the
receiving unit first confirms that BMID and AID are the same, then
accepts the bus operation and waits for the next bus operation.

1 1 Last A bus operation continuing after a First or Middle operation. The
operation on the receiving end is the same as when Middle is received, but
since the last message is indicated, after it is received the receiving unit
notifies the processor that message receipt is complete.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 23 –

NAT (No-Answer Transaction): same as memory access.

BCT (Byte Count): same as memory access. Note, however, that since no address is sent with
this command, the valid data is that indicated by BCT starting from byte 0 of the first data
word.

Note on message transfer parameters:
The message transfer parameters are 8 bytes of additional information sent following the
message communication commands. The operand contents include such items as the
subsystem ID in communication between subsystems. Detailed contents are left up to the
implementor.

6) Control register access commands

The semantics of each field are as given below.

R/W (Read/Write): same as memory access.

BCT (Byte Count):
Designates the number of bytes of data to be transferred. This field consists of 3 bits, so up
to 8 bytes can be designated per bus operation.
The number of valid bytes transferred on the bus must equal the BCT contents plus 1. For
example, BCT = H'7 means 8-byte transfer.

RA (Register Address):
Designates the register address. The byte alignment is defined by the lower 3 bits of RA
and the BCT contents. Starting from the byte position of the first word of data as
determined by the lower 3 RA bits, the number of bytes as determined from BCT is the
valid data. If the address is 8n + 3 and BCT is X'6' (7-byte transfer), the valid data is as
shown in Figure 8 below.

byte position 0 1 2 3 4 5 6 7

1st data word I I I V0 V1 V2 V3 V4

2nd data word V5 V6 I I I I I I

Vi: Valid

I: Invalid

Figure 8 - RA and byte alignmentIECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 24 – 14576 © ISO/IEC:1999(E)

7) Answer

The answer command in an answer transaction is the first information returned by DUT to SUT.
The pairing of BMID and BSID is the same as in an order transaction; but since the bus master is
a DUT, BMID is the DUT ID and BSID is the SUT ID.

The semantics of each field are as given below.

ROPT (Return Operation Type):
The OPT code sent by SUT to DUT in the order transaction is embedded in this field.

RNAT(Return NAT):
The NAT designated in the order transaction is embedded in this field.

RAID (Return Access Identifier):
The AID designated in the order transaction is embedded in this field.

ANS (Answer code):
Answer information, consisting of 8 bits and indicating the results of the request made in
the order transaction. Part of the field is used for status information at the bus slave.
Definition of the remaining contents is left to the implementor.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 25 –

4.2.3 Transfer sequence

The transfer sequence is fixed, and the bus operation sequence depends on the type of command.

The notation used in the sequence diagrams below is as follows.

CO: Order command (in order transaction)

Di: Data

CAW:Answer command (in answer transaction)

A: Address

P: Parameter

1) Memory access

a) 32-bit addressing

b) 64-bit addressing (8-byte bus width)

 (write)

 M of CO = 1
(cache invalidation)

 CO
A



 CO D0 . . Dn-1 CAW

  D1 . . Dn 
A

 (write)

 M of CO = 0

 CO CAW D0 . . Dn-1
A

   D1 . . Dn

(read)

 (write)
 M of CO = 1

(cache invalidation)

 A  D1 . . Dn

 A

CO

CO D0 . . Dn-1 CAW

(8-byte bus width)

CO A (4-byte bus width)

. .

D0 D1 . .

CO CAW D0 . . Dn-1

 A D1 . . Dn 

 (write)
 M of CO = 0 (8-byte bus width)

(8-byte bus width)

(4-byte bus width)CAWCO A Dn-1 Dn

(4-byte bus width)CO D0A D1 Dn CAWDn-1

 (read)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 26 – 14576 © ISO/IEC:1999(E)

 CO D0 . . Dn-1 CAW

  D1 

 CO D0 CAW

 CO CAW D0

   D1

2) Control space access

a) 32-bit addressing

b) 64-bit addressing (8-byte bus width)

3) Message transfer

4) Control register access

(8-byte bus width)

D0 D1 . .

 CO CAW D0 . . Dn-1

 A  D1 . . Dn

 A D1 . . Dn 

 (write)
(8-byte bus width)

(8-byte bus width)

(4-byte bus width)CAWCO A Dn-1 Dn

(4-byte bus width)CO D0A D1 Dn CAWDn-1

 (read)

 (write) CO D0 . . Dn-1 CAW

  D1 . . Dn 
A

 CO CAW D0 . . Dn-1
A

   D1 . . Dn

(read)

P (4-byte bus width)CO P D0 Dn-1D1 . . Dn

(8-byte bus width)

 CO D0 . . Dn-1 CAW

  D1 . . Dn 
P

CAW

(4-byte bus width)CAW

(8-byte bus width)

CAW D0 D1 CO

 CO D0 D1

(4-byte bus width)

. .

(write)

 (read)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 27 –

4.3 Arbitration

STbus arbitration is centralized arbitration by means of the bus handler, which is configured as
indicated in 3.1 Connection Interface. Requests are made to the bus handler from each unit via
two kinds of bus request lines. The bus handler issues bus grant signals in response to these
requests.

STbus does not specify the algorithm for priority control.

4.4 Status Reports

This section specifies the information on "transfer data receive status at the bus slave side"
reported in answer transactions.

A status report by DUT to SUT in an answer transaction is for status indication in response to an
order transaction. The answer codes are defined as shown in Table 7, using bits in the answer
fields.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 28 – 14576 © ISO/IEC:1999(E)

Table 7 - Answer Code Definition

Answer code values

 0 1 2 3 4 5 6 7

Semantics Classification

0

0

 0 0 0 0 0 0

 0 0 0 0 0 1

 0 0 0 0 1 0

 1 1 1 1 1 1

No error

No error (Lock transfer)

Reserved

Reserved

Answer code defined by
system manager

(in case of no error)

1

 0 0 0 0 0 0

 1 1 1 1 1 1

User dependent

User dependent

Answer code defined by user
(in case of no error)

1

0

 0 0 0 0 0 0

 0 0 0 0 0 1

 0 0 0 0 1 0

 0 0 0 0 1 1

 1 1 1 1 1 1

Hardware error

Illegal command

Bus sequence error

Reserved

Reserved

Error report defined by

system manager

1

 0 0 0 0 0 0

 1 1 1 1 1 1

User dependent

User dependent

Error report defined by user

1) No error: This indicates that an order transaction has been received correctly by DUT.

2) No error (Lock transfer): In a lock transfer, this indicates that an order transaction has been
received correctly by DUT.

3) Hardware error: This indicates that a bus signal parity error has been detected at DUT.

4) Illegal command: This indicates the receipt of a bus command that cannot be accepted. This
is returned when, for example, a non-supported OPT or BT is received.

5) Bus sequence error: This indicates that DUT has detected a discrepancy between the data size
sent by SUT and the transfer data size designated in the order command, or indicates
that BS* has been asserted more than one cycle.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 29 –

 4.5 Data Transfer

This section specifies details of each bus operation.

A memory access write operation is explained in greatest detail as an example, while the
other operations are given in outline. The operation sequences given in this section are for
32-bit addressing. On the sequences for 64-bit addressing, refer to the operation sequences in
this section plus the transfer sequences in 4.2.3.

Only normal operation sequences are explained here. On sequences when error occurs during
a transaction, see 4.8 Error Handling.

4.5.1 Memory access (write)

The bus sequences for a write operation in memory access are shown in Figures 9 a) - d).
Of these, a) and c) are for one-word memory write and n-word memory write in a no-answer
transaction, while b) and d) are for one-word memory write and n-word memory write in a
basic-format transaction.

All system bus operations are synchronized with the falling edge of the bus clock (the vertical
dotted lines in the figures). The figures take into account gate delay, accounting for the
deviation from the bus clock line in the case of some signals.

Note that the part of the figure to the right of "Bus" indicates the timing for information
occurring on the bus between function units.

The explanation below deals mainly with Figure 9 d) on n-word memory write (basic
operation format).

[1] When a new memory access request occurs, function unit (#0) asserts RQL*(#0),
issuing a bus request signal.

[2] If the RQL*(#0) signal can be accepted, the bus handler asserts a bus grant signal
GR*(#0) to function unit (#0), granting it the bus right.

[3] Function unit (#0) negates the RQL*(#0) signal upon the assertion of GR*(#0).

[4] Function unit (#0) obtaining the bus right by means of GR*(#0) next validates the AD
bus for two-way information transfer, and asserts BUR* and CSP* signals, then sends
information on the bus in the sequence CO (command) and A (address), then Di (data).

[5] At the same time as the first information is sent, function unit (#0) asserts a BS* (bus
transaction start) signal declaring to the other function units the start of the necessary
bus operation.

[6] Function unit (#0) negates the ET* signal two cycles prior to the end of the transfer
data, declaring the end of the transaction to the bus handler.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 30 – 14576 © ISO/IEC:1999(E)

[7] Function unit (#0) negates the BUR* (burst) signal one cycle prior to the end of the
transfer data, declaring the end of the transaction to the DUT (destination function
unit).

[8] When the bus handler detects the negation of ET*(#0) it negates GR*(#0), revoking
the bus right of function unit (#0).

[9] Function unit (#1) prepares a normal CAW (answer) for notifying function unit (#0) of
normal write completion, and asserts RQH*(#1), requesting the bus right. If error is
detected, an error answer is prepared and RQH*(#1) is asserted.

[10] If RQH*(#1) can be accepted, the bus handler asserts a bus grant signal GR*(#1),
granting the bus right to function unit (#1).

[11] Function unit (#1) negates RQH*(#1) upon the assertion of GR*(#1).

[12] Function unit (#1), obtaining the bus right by means of GR*(#1), validates the AD bus,
then sends the CAW on the bus.

[13] Function unit (#1), at the same time as it sends CAW, asserts BS* with BUR*
remaining negated, declaring the start and end of the transaction.

[14] The bus handler upon detecting the negation of ET* (#1) negates GR*(#1), revoking
the bus right of function unit (#1).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 31 –

[4]

[1]

[7]

[8]

[3]

[6]

Figure 9 a) - One-word memory write (no-answer transaction)

Function unit(#0)

RQH∗(#0)

RQL∗(#0)

ET∗(#0)

(GR∗(#0))

Send buffer

Receive buffer

Bus handler

GR∗(#0)

GR∗(#1)

 Bus
 BS∗
 BUR∗
 AD[00..31]∗
 AD[32..63]∗

Function unit(#1)

RQH∗(#1)

RQL∗(#1)

ET∗(#1)

GR∗(#1)

Send buffer

Receive buffer

Co D

A 

Co D

A 

A 
 Co D

[2]

[5]

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 32 – 14576 © ISO/IEC:1999(E)



•

[1]

[4]

[8][2]

Figure 9 b) - One-word memory write (basic transaction)

Function unit(#0)

RQH∗(#0)

RQL∗(#0)

ET∗(#0)

(GR∗(#0))

Send buffer

Receive buffer

Bus handler

GR∗(#0)

GR∗(#1)

 Bus
 BS∗
 BUR∗
 AD[00..31]∗
 AD[32..63]∗

Function unit(#1)

RQH∗(#1)

RQL∗(#1)

ET∗(#1)

GR∗(#1)

Send buffer

Receive buffer

Co D

A 

Co D

A 

A 
Co D

[3]

[6]

[7]
[5]



CAW


AW

[10] [14]

[12]
CAW

[9] [11]

[13]

C

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 33 –

[2]

[3][1]

Figure 9 c) - n-word memory write (no-answer transaction)

[4]

Function unit(#0)

RQH∗(#0)

RQL∗(#0)

ET∗(#0)

(GR∗(#0))

Send buffer

Receive buffer

Bus handler

GR∗(#0)

GR∗(#1)

 Bus
 BS∗
 BUR∗
 AD[00..31]∗
 AD[32..63]∗

Function unit(#1)

RQH∗(#1)

RQL∗(#1)

ET∗(#1)

GR∗(#1)

Send buffer

Receive buffer

[6]

[8]

[5]

Co D0 Dn-1

A D1 Dn

[7]

Co D0 Dn-1

A D1 Dn

Co D0 Dn-1

A D1 Dn

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 34 – 14576 © ISO/IEC:1999(E)



[1] [3]

[6]

[8]



CAW

[2]

•

[4]

Function unit(#0)

RQH∗(#0)

RQL∗(#0)

ET∗(#0)

(GR∗(#0))

Send buffer

Receive buffer

Bus handler

GR∗(#0)

GR∗(#1)

 Bus
 BS∗
 BUR∗
 AD[00..31]∗
 AD[32..63]∗

Function unit(#1)

RQH∗(#1)

RQL∗(#1)

ET∗(#1)

GR∗(#1)

Send buffer

Receive buffer

[5]

Co D0 Dn-1

A D1 Dn

[7]

Co D0 Dn-1

A D1 Dn

Co D0 Dn-1

A D1 Dn

Figure 9 d) - n-word memory write (basic transaction)


CAW

[10] [14]

[12]
CAW

[11]

[13]

[9]

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 35 –

4.5.2 Memory access (read)

The bus sequences for a read operation in memory access are shown in Figures 10 a) - b).

The function unit corresponding to DUT begins an operation for reading data from the
memory area indicated by the address in its own local memory.

After the read operation is complete, DUT first sends a CAW (answer) and then D (read data)
to SUT.

SUT checks the CAW contents and the data, and if these are normal, begins an operation for
writing the read data to its own local memory. When the write operation is complete, the
memory access read operation is ended.

If the CAW contents contain error, or if error is detected in the SUT local memory write
operation, this is notified to the software as a bus error in general.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 36 – 14576 © ISO/IEC:1999(E)

 
AW DC

AW D
 

Figure 10 a) - One-word memory read

Co

A

Function unit(#0)

RQH∗(#0)

RQL∗(#0)

ET∗(#0)

(GR∗(#0))

Send buffer

Receive buffer

Bus handler

GR∗(#0)

GR∗(#1)

 Bus
 BS∗
 BUR∗
 AD[00..31]∗
 AD[32..63]∗

Function unit(#1)

RQH∗(#1)

RQL∗(#1)

ET∗(#1)

GR∗(#1)

Send buffer

Receive buffer

•

 
AW D

Co

A

Co
A

C

C

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 37 –

AW D0 Dn-1C

  D1 Dn

Figure 10 b) – n-word memory read

Co

A

Function unit(#0)

RQH∗(#0)

RQL∗(#0)

ET∗(#0)

(GR∗(#0))

Send buffer

Receive buffer

Bus handler

GR∗(#0)

GR∗(#1)

 Bus
 BS∗
 BUS∗
 AD[00..31]∗
 AD[32..63]∗

Function unit(#1)

RQH∗(#1)

RQL∗(#1)

ET∗(#1)

GR∗(#1)

Send buffer

Receive buffer

•

Co

A

Co
A

 D1 Dn

AW D0 Dn-1

  D1 Dn
AW D0 Dn-1C

C

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 38 – 14576 © ISO/IEC:1999(E)

4.5.3 Control space access (write)

The bus sequence for a write operation in control space access is shown in Figure 11.

The function unit corresponding to DUT writes data to the control space indicated by the
address in its own local memory.

After the operation is complete, DUT sends a CAW (answer) for the operation to SUT. SUT
checks the CAW contents, and if normal, ends the write operation to the control space
address.

If the CAW contents contain error, this is notified to the software as a bus error.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 39 –


AWC



C

 A D1 Dn

Co D0 Dn-1

AWC

 

Figure 11 - n-word write: control space access

Function unit(#0)

RQH∗(#0)

RQL∗(#0)

ET∗(#0)

(GR∗(#0))

Send buffer

Receive buffer

Bus handler

GR∗(#0)

GR∗(#1)

 Bus
 BS∗
 BUR∗
 AD[00..31]∗
 AD[32..63]∗

Function unit(#1)

RQH∗(#1)

RQL∗(#1)

ET∗(#1)

GR∗(#1)

Send buffer

Receive buffer

•

A D1 Dn

Co D0 Dn-1

 A D1 Dn

Co D0 Dn-1 AW

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 40 – 14576 © ISO/IEC:1999(E)

4.5.4 Control space access (read)

The bus sequence for a read operation in control space access is shown in Figure 12.

The function unit corresponding to DUT begins an operation for reading data from the
control space area indicated by the address in its own local memory.

After the read operation is complete, DUT first sends a CAW (answer) for the operation and
then D (data) to SUT.

SUT checks the CAW contents, and if these are normal, begins an operation for writing the
read data to its own local memory.

If the CAW contents contain error, or if error is detected in the SUT local memory write
operation, this is notified to the software as a bus error.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 41 –

AW D0 Dn-1C

  D1 Dn

Figure 12 - n-word read: control space access

Co

A

Function unit(#0)

RQH∗(#0)

RQL∗(#0)

ET∗(#0)

(GR∗(#0))

Send buffer

Receive buffer

Bus handler

GR∗(#0)

GR∗(#1)

 Bus
 BS∗
 BUR∗
 AD[00..31]∗
 AD[32..63]∗

Function unit(#1)

RQH∗(#1)

RQL∗(#1)

ET∗(#1)

GR∗(#1)

Send buffer

Receive buffer

•

Co

A

Co

A

 D1 Dn

AW D0 Dn-1

  D1 Dn

AW D0 Dn-1C

C

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 42 – 14576 © ISO/IEC:1999(E)

4.5.5 Message transfer

The bus sequence for a message transfer operation is shown in Figure 13.

The DUT designated by BSID in the CO (command) begins a data write operation as
instructed by MD.

After the write operation is complete, DUT returns a CAW (answer) for the operation to SUT.

SUT checks the CAW contents, and if these are normal, ends the message transfer operation.

If the CAW contents contain error, this is notified to the software as a bus error.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 43 –

Co P D0 Dn-1

 P D1 Dn


AWC



C

AWC

 

Figure 13 – n-word message transfer

Function unit(#0)

RQH∗(#0)

RQL∗(#0)

ET∗(#0)

(GR∗(#0))

Send buffer

Receive buffer

Bus handler

GR∗(#0)

GR∗(#1)

 Bus
 BS∗
 BUR∗
 AD[00..31]∗
 AD[32..63]∗

Function unit(#1)

RQH∗(#1)

RQL∗(#1)

ET∗(#1)

GR∗(#1)

Send buffer

Receive buffer

•

 P D1 Dn

Co P D0 Dn-1

 P D1 Dn

Co P D0 Dn-1 AW

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 44 – 14576 © ISO/IEC:1999(E)

4.5.6 Control register access (write)

The bus sequence for a write operation in control register access is shown in Figure 14.

The function unit corresponding to DUT writes data to the control register indicated by RA in
the CO (command).

After the operation is complete, DUT returns a CAW (answer) for the operation to SUT.

SUT checks the CAW contents, and if these are normal, ends the control register access write
operation.

If the CAW contents contain error, this is notified to the software as a bus error.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 45 –

•

Figure 14 - One-word write: control register access

Function unit(#0)

RQH∗(#0)

RQL∗(#0)

ET∗(#0)

(GR∗(#0))

Send buffer

Receive buffer

Bus handler

GR∗(#0)

GR∗(#1)

 Bus
 BS∗
 BUR∗
 AD[00..31]∗
 AD[32..63]∗

Function unit(#1)

RQH∗(#1)

RQL∗(#1)

ET∗(#1)

GR∗(#1)

Send buffer

Receive buffer

Co D0

 D1

Co D0

 D1

 D1
Co D0



CAW


AW

CAW

C

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 46 – 14576 © ISO/IEC:1999(E)

4.5.7 Control register access (read)

The bus sequence for a read operation in control register access is shown in Figure 15.

The function unit corresponding to DUT reads data from the control register indicated by RA
in the CO (command).

After the read operation is complete, DUT returns a CAW (answer) for the operation.

SUT checks the CAW contents, and if these are normal, latches the read data and ends the
control register access read operation.

If the CAW contents contain error, this is notified to the software as a bus error.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 47 –

 D1

AW D0C

AW D0

  D1

Figure 15 - One-word read: control register access

Co



Function unit(#0)

RQH∗(#0)

RQL∗(#0)

ET∗(#0)

(GR∗(#0))

Send buffer

Receive buffer

Bus handler

GR∗(#0)

GR∗(#1)

 Bus
 BS∗
 BUR∗
 AD[00..31]∗
 AD[32..63]∗

Function unit(#1)

RQH∗(#1)

RQL∗(#1)

ET∗(#1)

GR∗(#1)

Send buffer

Receive buffer

•

 D1

AW D0

Co





C

C

Co

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 48 – 14576 © ISO/IEC:1999(E)

4.6 Lock Operations

STbus supports lock transfer operations, by which a function unit maintains exclusive right to the
bus, for use in consecutive information transfer operations. For example, the lock transfer is used
for a Test & Set operation (a modified read and write operation), etc.

The bus sequence for a lock transfer operation is shown in Figure 16. In the example shown in
this figure, read and write bus operations take place consecutively during the time a LCK* signal
is asserted.

SUT must assert both the RQL* signal and the ET* signal simultaneously when SUT requests the
bus right for a lock transfer, even if the order transaction has one cycle transfer (See Figure 16).

The LCK* signal is asserted by SUT at the same time as the BS* signal. The LCK* negate timing
depends on the timing by which the processor ends the exclusive control instruction. Note,
however, that the LCK* signal must continue to be asserted until SUT completes its last
transaction. In this way exclusive right to the bus is guaranteed only during the time LCK* is
asserted.

While the LCK* signal is asserted, the bus handler does not assert GR* in response to a RQL*
request from another function unit.

GR* should be asserted, however, in response to a RQH* request, so any function unit can
execute an answer transaction (See Annex B).

As means to notify the acknowledgment of the lock transfer on the reception side to the
transmission side, a lock reception code should be provided to the answer codes (See Table 7).

Note that the way of lock transfer to cache data under the EM (Exclusive and Modified) state is
shown in Annex C.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 49 –

AW D0
  D1

 A D1
Co D0

(1) Even if another FU#2 asserts RQL*(#2), the bus handler should not assert GR*(#2) to
FU(#2) next bus cycle of assertion of GR*(#0) to FU(#0).

However, the bus handler was too late to suspend GR*(#2) assertion after recognition of the
lock signal assertion.

For this reason, one cycle transfer in lock transfer operation is executed like two cycle
transfer. That is, it should be specified to assert the ET*signal with the RQL*signal
simultaneously.

Figure 16 - Bus lock transfer

Function unit(#0)
RQH* (#0)
RQL* (#0)
ET* (#0)

(GR* (#0))

Send buffer

Receive buffer

 A D1

C

Co D0

AW

 

 
AW

Co
 A

Bus handler

GR* (#0)

GR* (#1)

 Bus
 BS*
 BUR*
 LCK*
 AD[00..31]*
 AD[32..63]*
Function unit(#1)

RQH* (#1)

RQL* (#1)

ET* (#1)

GR* (#1)

Send buffer

Receive buffer

Co

A

Co
 A  D1

AW D0
  D1

C

Co D0

 A D1
AWC

 

C

C

Lock transfer

Read

[refer to (1) below]

[refer to (1) below]

AW D0C

 Write

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 50 – 14576 © ISO/IEC:1999(E)

4.7 Cache-related Operations

This section specifies system bus operations that support a copyback cache scheme.

Only the operation sequences on the system bus are described in this section. For cache state
transitions after each bus operation, refer also to Chapter 5 on Cache Coherency Control.

As cache coherency support functions are optional, users may not necessarily implement the
functions.

4.7.1 Cache invalidation

In processor bus interface control, when memory write commands are regularly monitored (bus
snoop) and the write address is found in cache memory, cache invalidation becomes necessary.

1) Modified read operation

When the memory address to which the processor attempts a write is not found in the processor
cache, the processor issues a memory read command and reads the data from main memory, then
writes in its cache. In this case the processor's cache state is modified, so it is necessary to
invalidate the cache memory of other processors. After the processor executes a memory read
command, it would be possible to realize this function by executing a memory write command for
cache invalidation, as explained in 2) below. However, to avoid sending unnecessary memory
write commands on the bus, the M bit is attached to the memory access command.

When the processor must access memory due to a cache write miss, the M bit is set to 1 before
reading from memory.

When another processor snoops the bus and performs a memory read bus operation, if the M bit is
set to 1 it performs address monitoring. If a cache hit occurs in this case, that cache entry is
invalidated.

2) Cache invalidation in Shared & Unmodified state

When a block registered in the copyback cache of a function unit is in Shared & Unmodified (SU)
state, that block is written over, and the following command method is used for invalidating the
cache of other processors.

A processor wishing to write over the block in SU state sets the M bit to 1 in the memory write
command, and sends only the command and address information on the bus.

The other processors recognize the memory write command and invalidate their cache. The sole
purpose of this bus operation is to invalidate cache memory, so no memory write is performed.

The sequence for cache invalidation is shown in Figure 17. In the case of a cache invalidation
command, there is no particular bus slave. If, however, parity error occurs during the order

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 51 –

command or address transfer, the bus handler detects the error. Also, if a retry operation as
described in 4.7.2 occurs for the cache invalidation command, the cache invalidation operation is
stopped. After the bus is obtained again, the part updated by the processor is written to shared
memory.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 52 – 14576 © ISO/IEC:1999(E)

Co

A

Figure 17 - Cache invalidation

Function unit(#0)

RQL∗(#0)

ET∗(#0)

(GR∗(#0))

Send buffer

Receive buffer

Bus handler

GR∗(#0)

 Bus
 BS∗
 BUR∗
 AD[00..31]∗
 AD[32..63]∗

Function unit(#1)

Send buffer

Receive buffer

A
 Co

Shared memory

Receive buffer
A

 Co

A
 Co

NOP

•

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 53 –

4.7.2 Retry indication

In a copyback cache method, cache data are updated only in the local cache of a processor and not
in a shared memory to alleviate the load on the system bus. If a local cache hit occurs when that
block is read by another processor or I/O adapter, it is necessary for the read data to be sent from
the local cache.

The sequence for a retry indication is shown in Figure 18.

Suppose function unit (#0), detecting a cache miss in the local cache, issued a memory block read
command, but the access address was found in the cache of function unit (#1) and the state of that
cache data is Exclusive & Modified (EM); in other words, the most recent block data is registered
only in the cache of function unit (#1). In this case function unit (#1) asserts a RTY* signal and
performs the writeback of that cache data.

The retry signal RTY* is asserted two cycles after the first cycle (command transfer cycle). In the
example in this figure, a retry indication is made in response to a read order.

Control is similar even in the case of write-through operation.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 54 – 14576 © ISO/IEC:1999(E)

•

Co

A

Figure 18 - Retry indication

Function unit(#0)

RQL∗(#0)

ET∗(#0)

(GR∗(#0))

Send buffer

Receive buffer

RTY∗ received

Bus handler

GR∗(#0)

 Bus
 BS∗
 BUR∗
 AD[00..31]∗
 AD[32..63]∗

Function unit(#1)

Send buffer

Receive buffer

RTY∗sent

A
 Co

Shared memory

Receive buffer

RTY∗received

A
 Co

A
 CoIECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 14

57
6:1

99
9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 55 –

4.7.3 Copyback and steal operations after retry indication

When the function unit corresponding to SUT receives a retry signal, it performs a retry after
waiting for a predetermined holding interval to allow for copyback. Prior to the retry operation a
copyback operation is performed by the function unit that asserted the retry signal.

The sequence for a copyback operation after a retry indication is shown in Figure 19. In this
figure function unit (#1), which asserted the retry signal, performs a copyback of one block (32
bytes) of cache data in Exclusive & Modified (EM) state to shared memory.

The figure also shows the timing for a steal operation by function unit (#0). This function is
optional, and can be used only by a system provided with a STI* signal.

In a system that does not support the steal inhibit signal, function unit (#0) retries access to shared
memory after the copyback operation.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 56 – 14576 © ISO/IEC:1999(E)

 Co D0 D2 D4 D6

 A

•

 A D1 D3 D5 D7

 Co D0 D2 D4 D6
 A D1 D3 D5 D7

A

A
 Co

Figure 19 - Copyback and steal operations after retry indication

Function unit(#0)

RQL∗(#0)

ET∗(#0)

(GR∗(#0))

Send buffer

Receive buffer

RTY∗received

Bus handler

GR∗(#0)

GR∗(#1)

 Bus
 BS∗
 BUR∗
 AD[00..31]∗
 AD[32..63]∗

Function unit(#1)

RQL∗(#1)

ET∗(#1)

(GR∗(#1))

Send buffer

Receive buffer

RTY∗sent

 Co

A
 Co

Shared memory

Receive buffer

RTY∗received

 Co

 A D1 D3 D5 D7

 Co D0 D2 D4 D6

 A D1 D3 D5 D7
 Co D0 D2 D4 D6

Steal operation

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 57 –

4.7.4 Steal inhibit operation

As explained in Chapter 5, steal operations may be inhibited for a certain interval for the sake of
maintaining cache coherency. The bus operation sequence for steal inhibit indication is shown in
Figure 20.

Function unit (#0) performs a read access. Next, function unit (#1), which holds the cache data in
EM state at the address accessed by function unit (#0), asserts a RTY* signal. At this time the
STI* signal is not asserted.

Suppose function unit (#2) performs a modified read of the same block before copyback is
performed by function unit (#1). Function unit (#1) asserts a retry signal, and with the same
timing asserts a RTY* signal. If function unit (#1) performs a copyback operation after that,
function unit (#0) is able to perform a steal but steal is inhibited for function unit (#0).

If both units were permitted to perform a steal, a cache data discrepancy would result between the
two copies of the same block; so in the above sequence a STI* signal is asserted at the time of
access by function unit (#2), indicating that a steal is not allowed.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 58 – 14576 © ISO/IEC:1999(E)

 A

 Co D0 D2 D4 D6

 Co D0 D2 D4 D6

 A D1 D3 D5 D7

 A D1 D3 D5 D7

 A

 A

•

 A

 A D1 D3 D5 D7
 Co D0 D2 D4 D6

•

Figure 20 - Steal inhibit operation

Function unit(#0)

RQL∗(#0)

ET∗(#0)

Send buffer

Receive buffer

RTY∗received

STI∗received

Bus handler

GR∗(#0)

GR∗(#1)

GR∗(#2)

 Bus

 AD[00..31]∗
 AD[32..63]∗

 Co

Shared memory 0

Receive buffer

RTY∗received

 A D1 D3 D5 D7

 Co D0 D2 D4 D6

Function unit(#2)

RQL∗(#2)

ET∗(#2)

Send buffer

Receive buffer

RTY∗received

STI∗received

Function unit(#1)

RQL∗(#1)

ET∗(#1)

Send buffer

Receive buffer

RTY∗sent

STI∗sent

Co
 A

 Co
 A

Co
 A

 Co

Steal operation enabled

 A D1 D3 D5 D7
 Co D0 D2 D4 D6

Co
 A

Co

 Co

 Co
 A

Steal operation inhibited

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 59 –

4.8 Error Handling

This section specifies the operation when an error is reported in an answer transaction.

4.8.1 Handling errors notified in answer

An error report in an answer is issued by DUT.

When error is detected in an order transaction in a bus operation, DUT notifies SUT of the error
occurrence by means of the answer transaction.

SUT receives the report and performs error processing. If necessary, SUT may perform the order
transaction again.

The errors detected by DUT are as follows (See Table 7).

- Hardware error

- Illegal command

- Bus sequence error

The error report operation sequence when DUT detects error is shown in Figure 21.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 60 – 14576 © ISO/IEC:1999(E)


AW

 A D1 D3 D5 D7
 Co D0 D2 D4 D6

AW

•

Figure 21 - Error report in answer transaction when DUT detects error

Function unit(#0)

RQH∗(#0)

RQL∗(#0)

ET∗(#0)

(GR∗(#0))

Send buffer

Receive buffer

Bus handler

GR∗(#0)

GR∗(#1)

 Bus
 BS∗
 BUR∗
 AD[00..31]∗
 AD[32..63]∗

Function unit(#1)

RQH∗ (#1)

RQL∗(#1)

ET∗(#1)

(GR∗(#1))

Send buffer

Receive buffer



C

 A D1 D3 D5 D7

 Co D0 D2 D4 D6

A D1 D3 D5 D7
 Co D0 D2 D4 D6

C


AW

C

Error report

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 61 –

4.8.2 Other error detection

1) GRTOT (Grant Time Out)

Error is detected when SUT is unable to obtain the bus even after the prescribed waiting time has
expired.

The sequence is shown in Figure 22.

Figure 22 - When function unit (#0) detects time out

2) ASTOT (Answer Time Out)

Error is detected when SUT is unable to receive answer information even after the prescribed
waiting time has expired.

The errors in 1) and 2) above are detected by a bus interface control part (BIC) in each function
unit. BIC may record the type of error (GRTOT or ASTOT) and aborts the bus operation.

The length of waiting time is left as a user-dependent matter.

Function unit(#0)

RQH∗(#0)

RQL∗(#0)

ET∗(#0)

(GR∗(#0))

Bus handler

GR∗(#0)

GR∗(#1)

GRTOT

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 62 – 14576 © ISO/IEC:1999(E)

5. Cache Coherency Control
This chapter explains the cache coherency operations in STbus, for maintaining consistency
between the contents of a shared memory and those of a cache memory in each function unit
when STbus is used as a memory bus in a TCMP (tightly coupled microprocessor) system, etc.

Cache coherency is maintained in block data with a block size of 32 bytes.

As cache coherency support functions are optional, users may not necessarily implement the
functions.

5.1 Cache Control Methods

The following two cache control methods are supported in STbus.

1) Write-through (consisting of the two states Invalid (I) and Shared & Unmodified (SU))

Write data from the processor or instruction execution part is reflected directly in memory.

2) Copyback (consisting of the three states Invalid (I), Shared & Unmodified (SU), and
Exclusive & Modified (EM))

Write data from the processor or instruction execution part is not reflected directly in
memory, but is updated only in the cache. Cache memory with three internal states is
supported.

STbus also supports systems that use a combination of both methods. For this reason, the
specifications for write-through operation also include the minimum necessary specifications for
mixed use of a copyback cache scheme.

5.2 Cache Block Attributes

Each function unit can have its own cache. Each cache consists of a number of blocks, and each
block is managed by the following attributes.

I: The data registered in the block is invalid.

SU: The data registered in the block matches shared memory. It is possible for two or
more caches to have the same block.

EM: The data registered in the block is the most recent data, and differs from the
contents of shared memory. Only one block may exist in this state, and it is not
shared by other caches.

To support the configuration of a copyback cache scheme using a split transfer bus, the following
transient access states are defined in addition to the above cache block attributes.

ISU: Transient state during transition between I and SU, from the issuing of a read order

until an answer is received.

IEM: Transient state during transition between I and EM, from the issuing of a modified

read order until an answer is received.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 63 –

EMSU: Transient state during transition between EM and SU, from the issuing of a retry

indication by another processor until copyback of the data is performed. This state
occurs when a read access by another processor takes place and the most recent data
in EM state is held in the cache of the local processor.

EMI: Transient state during transition between EM and I, from the issuing of a retry

indication by another processor until copyback of the data is performed. This state
occurs when a write access by another processor takes place and the most recent
data in EM state is held in the cache of the local processor.

5.3 Operations on System Bus

This section explains the relation between cache operations and the commands on the system
bus.

The system bus commands are shown in the table below. They are realized by different bit
combinations in the R/W and M fields in the memory access commands.

Table 8 - System Bus Command Types

R/W M Bus operation

0 0 Write command

1 Cache invalidation command (CI)

1 0 Read command

1 Modified read command

NOTE See Figure 17 on the sequence for cache invalidation.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 64 – 14576 © ISO/IEC:1999(E)

1) Issuing system bus commands

The issuing of system bus commands relates to CPU operation. This relation between CPU
operation and each of the system bus commands is illustrated in Figure 23.

Note that system bus commands are affected by the cache control method or by the block
attributes of cache data in the access area.

*1: Replace operation: An operation for registering new data in cache memory. In the case of EM-attribute

data in a copyback cache, copyback must be performed before new data registration.

Figure 23 - Relation between CPU operation and commands on system bus

 End

 Cache invalidation
 command

 System bus

 Write command

 System bus

 Cache hit

 Cache
 access

 CPU
 write
 request

 Read command
 (write command) *1

 System bus

 End Cache hit

 Cache miss

 Cache
 access

 CPU
 read
 request

 →

→

 (1)
 →

 (3)

 →

 (4)

 →

 (1) Write-through cache
 (2) Copyback cache(I-attribute data)
 (3) Copyback cache(SU-attribute data)
 (4) Copyback cache(EM-attribute data)

→

→

→

→

→

 System bus

 Write command

System bus

Modified read
command
(write command) *1

 (1)

 →

 (2)

 →

Cache miss →

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 65 –

2) Receiving system bus commands

In order to maintain cache coherency, each unit monitors the system bus commands issued by
other units. This command monitoring is called a bus snoop operation.

With a write-through cache the following operations occur.

- Write command by another unit ¸ That block is invalidated

- Cache invalidation command by another unit ¸ That block is invalidated

- Read command by another unit ¸ No action

- Modified read command by another unit ¸ That block is invalidated

In the case of a copyback cache, if a unit has EM-attribute data corresponding to a cache area to
which access is made by another unit, and an answer is pending in response to an order issued for
just that area, it is necessary to perform retry indication and, if supported, steal inhibition.

Details of these operations are given below in 5.4 and 5.5.

5.4 Retry Indication

A retry indication is an operation for temporarily suspending access to an EM-attribute block,
when that block is being accessed by an external device. A RTY* signal is provided for retry
indication.

A RTY* signal is asserted under any of the following four conditions.

1) When another function unit accesses cache data in EM state.

2) When another function unit accesses cache data in a transient state. (This does not include
ISU state when another unit reads the same data.)

3) When other function units receiving a cache invalidation command detect buffer full or
parity error.

4) When other function units performing snoop operation detect buffer full or parity error.

The bus sequence for a retry indication is shown in Figure 18.

A unit receiving a retry indication performs the retry after waiting for a fixed interval so that
access can take place after copyback is complete. The length of the wait interval and the number
of retries are user-dependent matters.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

– 66 – 14576 © ISO/IEC:1999(E)

5.5 Steal Operation

A steal operation is possible only in a system that supports the STI* (steal inhibit) signal. The
explanation that follows does not apply to systems that do not support this function.

A function unit must satisfy the following conditions to be able to perform a steal operation.

1) In accessing the same area prior to the steal, the unit must have received a retry indication
two cycles after issuing an order.

2) In the cycle in which the retry indication was received, a STI* signal cannot have been
asserted.

A steal operation occurs when copyback to shared memory is performed by a function unit with
an EM-attribute block, and a function unit that meets the above conditions receives the copyback
data on the system bus at the same time as shared memory. It is a way of reducing unnecessary
bus access.

The bus sequence for copyback and steal operations after a retry indication is given in Figure 18.

A STI* signal is asserted under the following conditions.

1) When one function unit (x) makes a retry indication in response to a memory read
command by another function unit (y), and a third function unit (z) issues a modified read
command for a block for which function unit x has not yet completed its copyback
operation.

2) When a retry indication was made in response to a memory write command, and a third
function unit accesses a block for which copyback is not complete.

3) When a block for which an answer is pending to a modified read command is accessed by
another function unit.

4) When a block for which an answer is pending to a memory read command is the object of a
modified read command issued by another function unit.

NOTE A retry indication is never caused by the assertion of a RTY* signal (condition 1) alone, so a steal

operation is not necessarily possible when a retry indication is received. When a function unit cannot perform a

steal, it must itself perform a retry operation after waiting for a fixed interval.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) – 67 –

5.6 Cache Data Management and State Transition

5.6.1 Write-through cache

A cache in a function unit must be equipped with a bus snoop function in order to maintain
coherency with shared memory. That is, all function units that share the same memory must be
able to monitor command and address data on the system bus, and must invalidate affected
entries whenever data that is updated in shared memory corresponds to a block in cache.

The same applies to cache invalidation and modified read commands.

When write-through and copyback schemes are both used in the same system, retry operation
must be supported to ensure that read and write operations will take place in the most recent data
block. The reason is that when a RTY* signal is asserted in response to a memory access, a
function unit with a write-through cache must be able to retry the read/write processing on the
bus.

Write-through cache data is managed using the following two internal cache states and one
transient state.

1) I (Invalid)

The latest data has not yet been registered in cache memory. In this state there is no reaction
to commands or addresses on the system bus.

In response to a write request from a CPU, the designated block is not read. Write data is
written to the external shared memory only.

When system reset takes place, all blocks must be in this state.

2) SU (Shared & Unmodified)

Valid data is registered for the entry. Since it is a write-through cache, the contents always
match those of the external shared memory.

In response to a write request from a CPU, the cache is written over and also shared memory
is written over via the system bus.

3) ISU (I → SU)

Block receipt is pending due to a read miss. The block attribute remains I (invalid). It is
necessary to monitor the system bus to determine whether there is any access to the same
block. Retry indication is made in response to any access by other function units other than
a read access. A steal inhibit indication (optional) is made in response to a block read in the
case of a write miss by another function unit.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
57

6:1
99

9

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

