INTERNATIONAL ISO/IEC
STANDARD 14576

First edition
1999-12

Information technology —
Synchronous split transfer type system bus
(STbus) — Logical layer

Technologies de l'informatien —
Bus de systeme de transfert de fente synchrone (STbus) —
Couche logique

Reference number
ISO/IEC 14576:1999(E)

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

INTERNATIONAL ISO/IEC
STANDARD 14576

First edition
1999-12

Information technology —
Synchronous split transfer type system bus
(STbus) — Logical layer

Technologies de l'informatien —
Bus de systeme de transfert de fente synchrone (STbus) —
Couche logique

U ISO/IEC 1999

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office e Case postale 56 ¢ CH-1211 Geneve 20 e Switzerland

PRICE CODE X

For price, see current catalogue

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

—ii - 14576 © ISO/IEC:1999(E)

Contents
I O 1Y o= PP PPPPPPPPPPURPPR 1..
I o0] o[RS Lo
2 Y o] o] [o%= o] 11 Y/ 1
P B 1< {111 (o o PP PPPPUPPPPPP 3.
P20 R = o] F= T F= U1 o] 0) =T 1 £ 3
p 2 [0 - 1 [SO RSRRRRRR) ISR 5
3. Interface SPEeCIfICAtiONSuuuiiiiiiiiiiiiiiieeee e gaen e S e G
B.1 Interface Signalsooooviiiiiiii e b 6
4. BUS OPEIatiONSccoiiiiiiiiiiiiiiiiie ettt e e e e e e e e e e b e e e e e eeeeeeeeeeeehanas 11......
4.1 Protocol for BasiC OPEerationscceeveiiieeeeeeee s eriiviiiesneseeeeeee s deeseeeienininnns 11
4.2 Transfer ProtoColcccoovviviieiiiiiiiiieee e e e 16
4.2.1 BuUS 0peration tyPesuvvveeiiiireore fdi i e 16
4.2.2 Command formatcccceeeevemide i [16
4.2.3 Transfer SEQUENCEc...iiihiiiiiiiiiiiiie e e e e e p e e e e e e e eees 25
(G TN o] 1 = L1 0] o s U SRURRRRRY FUPURPRRRRRR 27
.4 STAtUS REPOIS ..uiiiiiiiiiiiie b sttt e et e e e e ean s e aaneees [e e e eaaans 27
(T B == B I = 1 1 =] G PPN S 29
4.5.1 Memory acCEeSS (WIMLE) ...uuuueiiiieiieeeeeeeeeeeeeeeeiiiiiees e e e e e e e e eeeeees feeeeaenens 29
4.5.2 Memory AGCESS (F€AA)uuvvriiiiiiiiiieiieieieeieiieiiiiiieeeeeeeeeeeee e e 35
4.5.3 Contral space acCess (WIE)uevvuvvieiiiieeeeeeeeeeeeeeeeeririnsees o e e eeeeeen 38
4.5.4 Control space access (read)cooovvvviiiiiiiiiiiiiiiiiiiieeeeeeeeeeee e 40
4.5.5 . MeSSsage transferoooviiiiicce b 42
4.576° Control register acCess (W)ccuvvvrrrreriiiriiiiiieeeeeeeeeeeeeeees feiiiii 44
457 Control register acCess (read)cceeeeeiieeeeeeeeeieieeeeeeeiene e 46
467 Lock Operations ..o 48
4.7 Cache-related OPEratioNSuuuuuuiiiiiiiieieeeeee et e e e e e e e e e e e e eeeaeeneanane 50
4.7.1 Cache invalidationcoooiiiiiiiiiiii e 50
4.7.2 Retry INAICALIONccooiiiiiieec e e e 53
4.7.3 Copyback and steal operations after retry indicationccceee 55
4.7.4 Steal INhibit OPEratioNciiiiiiiii e 57
4.8 Error HANAINGoeiiiiiiiiiiieee ettt e e 59
4.8.1 Handling errors notified iIN aNSWETccccooeeiiiiiiiiiieer e 59
4.8.2 Other error det@CONcccoiieiii e 61

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E)

5. Cache CohnerenCy CONIOlccooiiii i a e e e e e e e e e ees 62
5.1 Cache Control MethOdSoooiiiiiiiiiiieiie e e e e e e e e eeeeeaeeees 62
5.2 Cache BIOCK AMINDULESoooiiiiiii e 62
5.3 Operations 0N SYSIEM BUSccooiiiiiiiiii e 63
5.4 Retry INAICALIONuuuiiiiiiiii i e e e e e e e e e e e e e e e e e eaaeeeens 65
5.5 STEAI OPEIALION ...uuiiiiiiiiiiiiiieie ettt e et e e e e e e e e e e e e e e e e 66
5.6 Cache Data Management and State TranSitionccccoeeevieeeeeeeiieeeeeiiin 67
5.6.1 Write-through cachecccoviie i D L 67
5.6.2 Copyback cacheccccccviiiiiiiiiiiiiiiii e e e 70
D.7 NOtES 0N MEMOIY ACCESS ...covvviiiiieiieiiieeeeeeene et b e e e b 75
6. Hunctions for Enhanced Reliabilityccccoooooiiiriiir I e, 76
200 R = {=To (U] o F= T Tox YRR 4 S PUUOR S ISUSPPRRRN 76
6.2 Detecting FaultSueviiiiiiiiiiiii e G b 77
6.3 Preventing Faults from Spreadingccct i e 77
6.4 Supporting Fault Handling and DiagnosSiS) "..........cuuureirrieiiiiieieeeeenneneee b, 78
Annek A (informative) Performance (Estimated)ccccceeeeiiiiiiiiiieieeeeee [, 79
Annek B (informative) Return of answer in a lock transfer..........cccccce i, 80
Annek C (informative) Lock transfer and write back of copyback cache...........J................ 81

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

—iv— 14576 © ISO/IEC:1999(E)

Figures

Figure 1 - STDOUS APPLICALIONScceeeeiieeeeeee e e e e e e e e e e e e e e aeeeannees 2
Figure 2 - Connection interface between function units (basic pattern)c.ccevveee. 7
Figure 3 - Concept of bus operation protocol (for 1-cycle or 2-cycle transfer:

8-byte bus width specification, write Operation)ccccccceevevieeeiinnnninnnnnns 11
Figure 4 - Concept of bus operation protocol (for transfer of 3-cycles or more:

8-byte bus width specification, read Operation)cccceeeeeeeeeeieiiieeeeennnnnnnns 13
Figure 5 - Concept of bus operation protocol (for 1-cycle or 2-cycle transfer:

4-byte bus width specification, write operation)pcmdi e, 15
Figure 6 - Pipeline operation............ccoeeeeevvevveeeeviiiiiiieieee e S e 20
FIgUre 7 - BCT field....ooeeiiieieee e g e 21
Figure 8 - RA and byte alignment..............oooooeviiiiiiiieicssbiidieeee e, 23
Figure 9 a) - One-word memory write (no-answer tranSaction)ccceeefeeeeeninnnnnns 31
Figure 9 b) - One-word memory write (basic transaction)..........ccceeeeeeeeveeee e, 32
Figure 9 c) - n-word memory write (N0-ansSwWerAransaction)ccccvvveeeeedeeeeinns 33
Figure 9 d) - n-word memory write (basic transaction)cccceeeeveeeeeeeeefeeeiieieeiinnn, 34
Figure 10 a) - One-word MemOry rEad. ¢y i e e e e eeeeeee e e e e e b e e e 36
Figure 10 b) - n-word memory read ... e e 37
Figure 11 - n-word write: CONtrol SPACE ACCESS........ccoevviiiiiiiiriiiiiiieeeeeeeeeee e 39
Figure 12 - n-word read: contrel'space aCCeSS...........oovvvvevvvevviiiiiniiiiiiiesee b, 41
Figure 13 - Nn-word message tranSTer...... ... fereee e 43
Figure 14 - One-word-wirite: control register acCess.........ooeevvvvvvvveeveeeeeveeec e, 45
Figure 15 - One-werd read: control register aCCesscccccvvvvvvereeeeeeeeeeees i, 47
Figure 16 - BUSHOCK tranSfer..........uuvveiiiiii s [49
Figure 17 <Cache invalidation.............ccccouiiiiiiiiiiieeeeeeeeeeee e 52
Figure L8 = Retry iINdICAtIONvvuiiiiiii e b s 54
Figure 19 - Copyback and steal operations after retry indicationfeeeeeeeeeennn. 56
Figure 20— Stealinhibit operation e e 58
Figure 21 - Error report in answer transaction when DUT detects error 60
Figure 22 - When function unit (O#) detects time OUt..........ccccevveiieeeieiiiiiieeee, 61
Figure 23 - Relation between CPU operation and commands on system bus 64
Figure 24 - STbus write-through cache coherency control protocol.............................. 69
Figure 25 - SThus copyback cache coherency control protocolccccccevvieieennnnnnns 74

Figure A.1 - STbus performance (in 8-byte bus width and 32-bit addressing mode)....79
Figure B.1 - Example of dead lock problem ... 80
Figure C.1 - Example of lock transfer to EM cache data..............cccoovvvevviiiiiiiinciinnnnn. 81

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) —v-

Tables

Table 1 - Basic Interface Signals (function unit interfaces other than bus handler) 6
Table 2 - Optional Interface Signals (function unit interfaces other than bus handler)...6
Table 3 - Command Format for Information Transfer BUS.............cccccvenieeeieiiiiiiiiiins 17
Table 4 - OPT Code DefiNItIONSoeeviiuiiiiiiiaee et e e e e e e e e e eeeeeeeeeaeennnnn 18
Table 5 - M Bit DefiNItIONuuuiiiiiiiiiiiiiiiiiiee e e e e e 19
Table 6 - MESSAJE SEUUEINCEuuiiiiiiiiiieie et e e e e e e e e e e e e e e e 22
Table 7 - Answer Code Definition ... L e 28
Table 8 - System Bus Command TYPES.....cevvvvviiiieeeiiiiiiiiiiiiiieie b b 63

Table 9 - Semantics of Discrepancy between Base and Spare Signals......|.................. 76

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

—Vi—

INFORMATION TECHNOLOGY —

SYNCHRONOUS SPLIT TRANSFER TYPE
SYSTEM BUS (SThus) —

LOGICAL LAYER

14576 © ISO/IEC:1999(E)

ISO

Elect
stand
deve
the r¢

IEC flechnical committees collaborate in fields of mutUal interest. Other i

orgar
take

In the
comn
techn
Interr
a vot

Intern
Micrd
techn

Intern
Direc

Anne

FOREWORD

the International Organization for Standardization) and IEC (the Iy
fotechnical Commission) form the specialized system for

ardization. National bodies that are members of ISQ-or IEC partig
opment of International Standards through technical .committees es
pspective organization to deal with particular fields of technical activi

izations, governmental and non-governmental, in liaison with ISO af
part in the work.

 field of information technology, ISQ and IEC have established a joi
nittee, ISO/IEC JTC 1. Draft International Standards adopted by
ical committee are circulated toelnational bodies for voting. Public
1ational Standard requires approval by at least 75 % of the national b

D
C .

ational Standard
processor systems,

ology.

ISO/IEC 14576 was prepared by subcom
of ISO/IEC joint technical committee 1: |

ational Standards are drafted in accordance with the rules given in
tives, Part3:

xes A,"B and C are for information only.

iternational
worldwide
ipate in the
tablished by
y. ISO and
ternational
d IEC, also

nt technical
the joint
ation as an
pdies casting

mittee 26:
hformation

the ISO/IEC

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) —1-

INFORMATION TECHNOLOGY —

SYNCHRONOUS SPLIT TRANSFER TYPE
SYSTEM BUS (SThus) —

LOGICAL LAYER

1. (

1.1S
This |

perfomance and highly reliable system bus. STbus adopts a synchronous tran

high-9
bus o

The c
a) Sy:s
b) Bu

c) Co
ac

d) Fa

1.2A
This |

multig
a) A S
b) A S

Dverview

Cope

nternational Standard specifies the logical specifications of STbus which is
peed clock and a split transfer method enabling to minimize bus holding ti
peration and to use a bus efficiently.

pntents given in this specifications are as follows:

stem bus interface signal provisions;

5 operations and transfer protocol for gach bus operation;
ache memory of each processorin a multiprocessor system;
Ilt detection function using parity check and duplex configuration for contre
pplicability

rocessor system. Typical STbus applications are indicated in Figure 1:

bystem bus and an I/O bus in a TCMP system;

bystem bus in an LCMP system.

a high-
sfer method with a
me during one

byback cache coherency control for maintaining consistency between a shared memory and

| signals.

nternational Standard is Applicable to a high-performance system bus or gn I/O bus in a

- TCMP: tightly coupled multiprocessor system

(A system consisting of two or more processors sharing the same mem
entire system controlled by one OS.)

LCMP: loosely coupled multiprocessor system

ory, with the

(A system in which each processor is connected by a shared memory or other medium,

with each processor operated by an individual OS.)

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

—2- 14576 © ISO/IEC:1999(E)

Processor Processor
Shared
CPU . CPU memory
Systen]
bus
TCMP
System /O bus
/0 : /0
Processor Processor
Local memory Local memory
LCMP
system
CPU Local I/O CPU [i | Local IO
System bus

Figure 1 - STbus Applications

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) ~3-

2. Definitions

2.1 Explanation of Terms

For the purposes of this International Standard, the following terms and definitions apply.

1)

2)

3)

4)

5)

6)

7

8)

9)

Answer transaction

An information transfer operation by which a function unit receiving a command returns
answer information, to notify the unit issuing the command that the command has been

c

B
T
W
B
T
B
A

pbmpleted (In some cases the requested data IS appended) and 1o Indicate

nction units, selecting one of the requests; and granting the bus right to th

S master

function unit that has the bus right' (a grant signal has been asserted) and
formation on the bus.

s slave

function unit to which.nhformation is being transferred by the bus master.

LS snoop

xternal memory.

ache jnvalidation

cache.

C

PU

Status information.

asic signal

nose bus interface signals that must be implemented in every SThus systam, and thus for
hich compatibility is assured among different systems.

ock

ne minimum unit registered in cache memory. In SThus this is limited to 32 bytes.

s handler (BH)

concentrated bus control mechanism for serting out competing bus requests from different

fat function unit.

is transferring

onitoring of'the bus for read operations from external memory and write operations to

alidate a block in cache memc or example 2N a3 write access is made
to a Shared & Unmodified (SU) area, this is used to invalidate the same are

a in another

A central processing element with functions for interpreting and executing instructions. In
these specifications, cache memory is included with the CPU.

10) Copyback scheme

A cache updating method in which data written by the processor or instruction execution
part is updated only in the cache, without being reflected directly in memory. The copyback

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

-4 - 14576 © ISO/IEC:1999(E)

cache supported in STbhus has the following three internal states: Invalid state (I), Shared &
Unmodified state (SU), Exclusive & Modified state (EM).

11) DUT (Destination Unit)
A function unit performing an answer transaction.
12) Exclusive & Modified state (EM)

An internal state in a copyback cache, whereby the only place in the system an access area is
registered is in cache memory, and the contents are not the same as shared memory. In this
state, only the cache has been updated.

13) Hunction unit

Alhardware unit connected to the bus and having a mechanism for bus'intefface control.
Niormally one function unit consists of one board.

14) 1/O adapter

Alfunction unit that controls I/O devices under control of a‘processor.
15) Inpvalid state (1)

Alstate in which an area accessed by the processor is not registered in cachhe memory.
16) Modified read command

Alcommand issued to the system bus by a copyback cache memory when a write access by
the processor results in a write miss.

17) Qptional signal
Those bus interface signals that users are free to adopt or not in system implementation.
18) Qrder transaction

Anh information transfer operation for sending a command and requesting prpcessing by
ahother function wnit.

19) Harity

When nototherwise noted in these specifications, parity is always odd. Here odd parity
means‘that when a given signal (e.g., 8 bits) is augmented by a parity bit (e]g., 8 +1 =9
b to), thenifthe-sumof-I-bitsithe atgmet tet-setisameventumbet (;IIL.: dlng 0) an error

is detected.

20) Processor

A function unit with the capability of executing instructions and controlling the various I/O
adapters. Processor consists of CPU and memory in general.

21) Read hit/read miss

When an instruction or operand to be read by the processor is registered in cache memory,
this is called a read hit. If not, it is a read miss.

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) —5-

In the case of a read miss, if the object of the read is cacheable, one block containing the
object is newly registered in the cache.

22) Retry indication

The temporary suspension of access by external devices to a copyback cache area that has
been updated without the change having been reflected in main memory.

23) Shared & Unmodified state (SU)

An internal state in a write-through or copyback cache, whereby an access area is registered
in a cache and has the same contents as shared memory. Sharing by more than one cache is
ppssible.

24) SUT (Source Unit)

Alfunction unit performing an order transaction.

25) Write hit/write miss
Iflan area to be written by the processor is registered in.cache memory, this|is called a write
hit. If not, it is a write miss.

In the case of a write-through cache, the write datajs immediately reflected|in shared
nmemory.

Ifla copyback cache scheme is used, in the.case of a write hit the write data| is reflected in the
cache only. If a write miss occurs, one block of the write area is read from ghared memory
nd newly registered, then the write data is written over that area in the cache only.

26) Write-through scheme

art is reflected directly incnemory. The internal states are: Invalid state (1), Shared &

a
V

Al cache updating method in\which data written by the processor or instructipn execution
Y

Unmodified state (SU)!

2.2 Notation
The following symbols and other notation are used in these specifications.

- Function unit numbers are indicated by (#n), and control signals to each unit are written as
[signal‘line name + (function unit number)], e.g., RQL*(#n), GR*(#n).

- When the values of control signals are indicated, the following notation is used.

When indicating the logical value of a signal line: 1 and 0 are used, with 1 meaning assert
and 0 meaning negate.

When indicating the actual value on a signal line: "H" and "L" are used, with "H"
meaning high and "L" meaning low signal potential.

- Hexadecimal notation in these specifications is indicated by H'## (e.g., H'FF, H'00).

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

- 6— 14576 © ISO/IEC:1999(E)

3. Interface Specifications

3.1 Interface Signals
The STbus basic interface signals are listed in Table 1, as seen from one function unit.

In this table, RQL*, RQH*, GR*, and ET* are signals connected individually to each function
unit.

Table 1 - Basic Interface Signals (function unit interfaces other than bus handler)

No. Slgnal name count Functonal category connectipn type

1 [[RQLx (Requestlow) 1

2 || RQH (Request high) 1 Arbitration control individudlly

3 | GR (Grant) 1 connected

4 | ET* (End of bus transaction) 1

5 S (Bus transaction start) 1

6 IUR* (Burst) 1 Transfer cantrol

7 || €CSR (Control signal parity) 1

8 || LCKx (Lock) 1 Bus conneftion

9 || AD [00..63F (Command/address/data) 64 Command/address/data
10 || ADP [0..7F (AD parity) 8
11 || RTYx (Retry) 1 Cache coherency control
12 || RST (Reset) 1 Reset signal
13 | CK (Clock) 1 Clock See Note P.

Total number of signals 83
Nofe 1: A* after a sighal name indicates negative logic.
Note 2: For clock connection, a connection configuration must be adopted that can guarantee
the skew specified in the physical specifications.

The optional interface signal lines as seen from one function unit are listed in Tgdble 2. Since
these|signals are optional, the system implementor can choose whether or not tp use them.

Table 2 - Optional Interface Signals (function unit interfaces other than bus handler)

No. Signal name Count Functional category Connection type
14 || LCKS* (Lock spare) 1 Transfer control

15 || RTYS* (Retry spare) 1 Bus connection
16 | STI* (Steal inhibit) 1 Cache coherency control

17 || STIS* (Steal inhibit spare) 1

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) _7_

Connection structure

Clock generator

Function Function Function
unit(#0) _ unit(#1) unit(#n)

(CK) \ \Z N\

Bus handler
(BH)
A

LJL
ET* (#0)
RQH*
RQL*
ET* /(#1)
RQH*

RQL*
ET* (#n)
RQH*

GR*(#0)
GR*(#1)

2N\ 4

)\

GR’;(#n)

(85

BUR*
CSP*
LCK*
RTY*

\, RST*)

AD[00.. 63T

ADP[0..7]* n+1: Connected function unit count

CK signal: Individual signal or bus signal

For clock connection, a connection configuration must be adopted
that can guarantee the skew specified in the physical specifications.

Figure 2 - Connection interface between function units (basic pattern)

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

Explanation of each signal

1)

2)

3)

4)

5)

R

QL* (Request low)

14576 © ISO/IEC:1999(E)

This signal is used by a source unit (SUT) to request the bus. Each unit asserts this signal
when performing an order transaction, for requesting the bus right from the bus handler. A
function unit for which the GRsignal is asserted, granting the right to use the bus, must

negate this signal.

This signal is notified to the bus handler by each function unit using individual lines.

T
Si
R
T
Si
h
b

T
T
Si
W
Si
a

T
re

fu

E

T
T

multaneously.

QH* (Request high)

gnal when performing an answer transaction, in order to request the bus r
andler. A function unit for which the GRsignal is asserted;/granting the righ
IS, must negate this signal.

nis signal is notified to the bus handler by each function unit using individu

multaneously.

hile a LCK* signal is asserted, the bus<handler will not asserti@Response
gnal from another function unit. However, 6Rill be asserted in response t
Ny unit is capable of executing an.answer transaction.

GR* (Grant)

his signal is for granting the bus right to a bus master in response toxadrRQ

nction unit by thebus handler on individual lines.

™ (End of bus transaction)

nis signal Is issued by the bus master to give advance notice of the end of
nig signal is negated two cycles prior to the actual end of a data transfer.

his signal has a lower priority than that of RQIRQLx and RQH cannot be asserted

nis signal is used by a destination unit (DUT) to request the bus® Each unit asserts this

ght from the bus
[t to use the

[al lines.

nis signal has a higher priority than that of RQRQH+ and RQL cannot be alsserted

0 a RGL
D RQIMHo

DH: bus

guest signal. Only while this signal is asserted, a function unit enables bys drivers (Nos. 5
7, 9,10, in Table 1).and send information on the bus. This signal is supplied to each

transfer data.

If

IS Signat 1S Not asSerted at the same time assRpIRQHF, this 1S taken to

the requested transaction is a one-cycle transfer.

ean that

For a transfer of two cycles or more,+Ei§ asserted at the same time as RQLRQH:.

This signal is notified to the bus handler by each function unit using individual lines.

BS* (Bus transaction start)

When a function unit that has obtained the bus right performs an order transaction or answer
transaction, this signal is asserted at the same time as the command or answer information is
sent on the bus, indicating to the destination function unit the start of transfer information.

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) ~9-

This signal is asserted only during the first bus cycle of an order transaction or answer

tr

ansaction.

When data is sent following the initial command or answer information, information receipt
must be performed at the initiative of the receiving function unit, using thesigBal as a
reference.

6) B

UR* (Burst)

This signal indicates burst transfer mode, consisting of two or more data transfer cycles.
The sending function unit asserts this signal, and while it is asserted the receiving function

unitcontinues to receive data

This signal is negated one cycle prior to the end of data transfer. When_the
fynction unit detects the negation of this signal, it ends the receiving opéerati
cycle.

If
7) C
T

T
tr

S
is
9 A
T
in
10) A
T
11) R

T
54

SP* (Control signal parity)
nis is a parity signal for the transfer control signals BBd'BUR.. It indicates

CK* (Lock)

Ansaction, and is negated when the SUT-jtself indicates the end of a trans

plit transfer is the main method adopted for STbus, but interlock transfer u
also possible.

D [00..63]* (Command / address / data 00-63)

nis is a 64-bit two-way information transfer bus for time division transfer of
formation, address information, and data.

DP [0..7]* (AD patrity 0-7)
nese are parity signals for each byte of AD[00=63[hey indicate odd parity.
TY* (Retry)

nis signal is used for coherency control when a copyback cache scheme is
stem. When this signal is asserted, the bus master must retry the current

receiving
pn after one

a BS+ signal is asserted and BWs not asserted, one-cycle transfer is indidated.

pdd parity.

nis is a bus lock signal. It is asserted at the same time as the SUT starts gn order

hction.

sing this signal

control

used in a TCMP
transaction. See

5.4 Retry Indication for details.

12) RST* (Reset)

A function unit connected to STbus uses this signal to indicate a reset to other function
units. While this signal is asserted, reset is in effect. Assertion time of this signal is
specified to be 5 us-10 ps. Assertion timing shall be synchronized with the bus clock.

13) CK (Clock)

This is the STbus common clock signal. Bus operations are synchronized with the falling
edge of this signal.

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

~10— 14576 © ISO/IEC:1999(E)

14) LCKS*(Lock spare)

This is a spare LCK* signal. When this signal is used, LCK* must also be used at the same
time. If either LCK* or this signal is asserted alone, the lock transfer is not effective. The

lock transfer is performed, only when both LCK* and this signal are asserted. This signal is
optional.

15) R

TYS* (Retry spare)

This is a spare RT¥signal. When this signal is used, RTMust also be used at the same
time. If either RT¥ or this signal is asserted alone, the bus master must retry the current

16) S

fu
W

17) S

transaction. This signal Is optional.

TI* (Steal inhibit)

This is a signal used in copyback cache coherency control. It is eonnected

nction units. This signal is optional.
hen this signal is asserted, the bus master prohibits a steal-operation duri

data concerned. See 5.5 Steal Operation for details.

TIS* (Steal inhibit spare)

This is a spare S¥lsignal. When this signal is used, $Thust also be used at
time. If either ST* or this signal is asserted alone, the bus master prohibits
dpring copyback of data concerned. This.signal is optional.

pnly between

ng copyback of

the same
h steal operation

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) -11-

4. Bus Operations

4.1 Protocol for Basic Operations

Examples of basic STbus operations (one-cycle transfer and two-cycle transfer) are given here,
along with an explanation of the operations.

ClocksignalCK " —T—T T T T T T T T T T T T T T 1 r>Tme
Bus request signal 13] [10]
RULTHU) (OUnit#0 - BH) ROQH*(#I) (Unit#1 = ~BH)
(8]
Endrof-bus-transaction [1]
signal ET* (#0) — [6] [12]
Bus|grant signal
GR*(#0) [2] [7] (BH- #0) GR*(#l)[g] (BH- #1)
_ BS* = BS*]
Tramsfer control signals [4] [11]
BURY
[3] Unit#0 Unit #1
1 !
Dafa transfer bus ~ AD[00..31]x [C0|DO Unit #1 CAW Unit #0
(8 bytes) AD[32..63]* A |ID1 O
\bbreviations:

Co: Order command Di: Data ~A: Address CAW: Answer command BH: Bus handler
1]-[12]: Change point of each signal line (numbers correspond to explanation below)

Figure 3 - Concept of bus operation protocol (for 1-cycle or 2-cycle transfer:
8-byte bus width specification, write operation)

All function units and the bus handler operate in synchronization with the commpn clock CK.

[1] [In the figure above, function unit (#0) performs a two-word information trapsfer to
function unit (#1). First, function unit (#0) asserts a bus request signal(RQL

requesting the bus handler to grant the bus right. At the same time, since|the number of
words to be transferred is two, it also asserts an end-of-bus-transaction sigf#&)ET

[2] If the RQL*(#0) signal can be accepted, the bus handler asserts a bus grant signal
GRx(#0) to function unit (#0), granting it the bus right.

[3] Function unit (#0), obtaining the bus right, negates the R&) signal upon the
assertion of GR#0).

[4] Atthe same time as the above, function unit (#0) upon receivingd#bBRvalidates the
information transfer bus and sends information on the bus. In the initial cycle of
information transfer, it asserts a-B®ansfer control signal.

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

Since
functi

-12 - 14576 © ISO/IEC:

1999(E)

Since in this example a two-word information transfer is performed, axBlifRal is
asserted at the same time as BSforming the other function units of the start of burst
transfer. The BURsignal is negated one cycle prior to the end of the transaction.

The ET+(#0) asserted at the same time as(&B) is negated two cycles prior to the end
of the transaction, notifying the bus handler in advance that the bus is about to be freed.

When the bus handler detects the negation of(#]) it negates GR#0).

When answer information (one word) is returned in response to the information from
function unit (#0), function unit (#1) asserts a bus request signak BQJ; requesting the

answer is one, ET#1) is not asserted.
GR*(#1) to function unit (#1).

Function unit (#1), obtaining the bus right, negates the R@H signal upon t
assertion of GR(#1).

be transferred in the answer is one, BI(}&).is not asserted.

a split transfer method is adopted, the bus can be used for transactions b
DN units during steps [7] to [9]-above.

bus handler 1o grant the bus rlglit. AS Iong as the number of words 10 be 1

Since EF(#1) is negated, the bus handler negates(&R in one-word transfer.

If the RQHk(#1) signal can be accepted, the bus handler asserts.abus grgnt signal

-

e

At the same time as the above, function unit (#1) uponh receivirg#iRvalidates the
information transfer bus and sends information on the bus. In the initial cycle of
information transfer, it asserts aB®ansfer control signal. Since the number of words to

btween other

ransferred in the

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) ~ 13-

Clocksignalck ["1 T 1 T T T T 1T 1T 1T T T T° T T Time
Bus request signal 3] [8]
RQL* (#0) : RQH* (#1) = (Unit#1 - BH)
(1] [6]
End-of-bus-transaction
signal ET* (#0) ET*(#1) = © T\ [11]
Bus grant signal \
GR* (#0) [2] [5] GR*(#1) [7] : [12]
BS* e — BS* =
Transfer control signals. [4] [9]]
Unit #0 BURY e e v = e SHON | it 42
! _ !
; cAav|DO| .7 Bn=3 n-1 .
bata transfer bus ~ AD[00..31]* Co Unit #1 \ Unit #0
(8 bytes) AD[32..63]* | A 0 |Dif- [on-2 Dn

Figure 4 — Concept of bus ope?ation protocol (for tranéfer of 3-cycles or|more:
8-byte bus width specification, read‘operation)

[1] [The figure above shows one-word information‘transfer between function unit (#0) and
function unit (#1). First, function unit (#0) asserts a bus request signal(RQL
requesting the bus handler to grant the bus right. Since the number of wgrds to be
transferred is one, ET#0) is not asserted.

[2] |If the RQLx(#0) signal can be accepted, the bus handler asserts a bus grant signal
GR«(#0) to function unit (#0),-granting it the bus right.

[3] [Function unit (#0), obtaining the bus right, negates the-R&) signal upon the
assertion of GR(#0).

[4] |Atthe same time.as the above, function unit (#0) upon receivind#bBRvalidates the
information transfer bus and sends information on the bus. In the initial cycle of
information‘transfer, it asserts aB®ansfer control signal. Since the number of words to
be transferred in this example is one, BII) is not asserted.

[5] [Since RQIlx(#0) and E¥(#0) are negated, the bus handler negateq#&Rin ope-word
transfer.

[6] When answer information of three words or more is returned in response to the
information from function unit (#0), function unit (#1) asserts a bus request signal
RQH*(#1), requesting the bus handler to grant the bus right. In a multi-word answer,
ET*(#1) must be asserted at the same time.

[7] If the RQH(#1) signal can be accepted, the bus handler asserts a bus grant signal
GR*(#1) to function unit (#1).

[8] Function unit (#1), obtaining the bus right, negates the R@&4 signal upon the
assertion of GR(#1).

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

[9]

[10]

[11]

[12]

— 14— 14576 © ISO/IEC:1999(E)

At the same time as the above, function unit (#1) upon receivind#3lRvalidates the
information transfer bus and sends information on the bus. In the initial cycle of
information transfer, it asserts a-B®ansfer control signal.

Since in this example three words or more of information are transferred, a 8¢/l is
asserted at the same time as BSforming the other function unit of the start of burst
transfer. The BURSsignal is negated one cycle prior to the end of the transaction.

The ET(#1) asserted at the same time as @&R) is negated two cycles prior to the end
of the transaction, notifying the bus handler in advance that the bus is about to be freed.

€ bus handler monitors the bus for negation o Signal, and when this is
detected it negates GR1).

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) —15-

The operation when a 4-byte bus width is used (one-cycle or two-cycle transfer) is shown below for
reference.

ClocksignalCK [~ —T—T T T T T T T T T T T T T T T r>Time
Bus request signal 3] [10]
RQL=* (#0) _— (Unit#0 - BH) RQH=*(#1) -[8] (Unit#1 - BH)
End-of-bus-transaction [1] f
signal ET* (#0) — 6] [12]
Bus grant signal v ‘
GR* (#0) 2] N 7] GR* (#1)
[0l o)
-
. BS* m— BS* ==
Trangfer control signals [4] [11]
BUR* Unit #0 Uit #1
[5] ! |
Datta transfer bus ~ AD[00..31]* | Co| A | Dol D1l Unit #1 CA Unit #0
(4 bytes) _ _

Figure 5 - Concept of bus operation protocol (for 1-cycle or 2-cycle transfer:
4-byte bus width specificatioety, write operation)

When the width of the information bus is 4 bytes, the operation by which functioh unit (#0)
sendg two-word information to function unit(#1) is essentially the same as with an 8-byte bus.
Since| however, the bus width is 4 bytes, the information that is sent on an 8-byje bus in one
cycle frequires two cycles on a 4-byte"bus, as shown in the figure above.

The explanation of each signalchange point is the same as for the 8-byte specitication.

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

- 16 —

4.2 Transfer Protocol

42.1

Bus operation types

14576 © ISO/IEC:1999(E)

The bus operations on STbus can be classified broadly into four types; memory access, control
space access, message transfer and control register access.

1)

Memory access

This is a bus operation in which a function unit performs a read or write operation in shared
memory or in the local memory of any other function unit. In the basic bus specification

a

2)

3)

4)

4.2.2

The i
is AD

The in

Ny transfer byte size can be designated up to the maximum of 256 bytes:

ontrol Space access

nis is a bus operation in which a program running on a functionunit directl
rites data mapped to the control space of any other function unit. In the bz
pecification any transfer unit byte size can be designated up.to the maximu

essage transfer

nis is a bus operation in which a function unit sendls ‘a message to any oth

ontrol register access

nis is a bus operation in which a program:running on a function unit directl
rites up to 8 bytes in the control registers (up to 256) of any other function

Command format

formation transfer bus is 64-bits wide (or 32 bits), and adopts a big endian
[00..63} (or AD [00..31})starting from the MSB.

formation transfer bus’is divided into byte units, in the order from byte O tc

from the MSB.

Information transferred on the bus can be classified broadly into the four types g

addre

In infd
in Tak

sses, data,-and message communication operands.

rmation transfer, the commands are sent first to the destination unit. The
le.3.” Although not indicated specifically in the table, a single parity bit is g

/ reads or
hsic bus
m of 256 bytes.

br function unit.

/ reads or
unit.

. The bit order

byte 7 starting

ommands,

format is shown
ttached to the

abov

DyTte Units.

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E)

—17 -

Table 3 - Command Format for Information Transfer Bus

1: Modify

R/W: Read/Write

\ID: Access ID

\64: 64-bit Address Space

NAT: No-Answer Transactiof

ROPT: Return Operation Typg

RNAT: Ret

urn NAT

RAID: Return Access ID

ANS: Answer code

* Reserved

Byte 0 Byte 1 Byte 2 Byte 3
Bus Operation |OPT OPT OPT
0 1 2
00| 01........... 07 08| 09............. 15 1q 17 18 19 20 21 2228 24........ B1

Memory access a BMID 0 BSID 0 BT | RIW | A64] M | NAT AID BCT
Control space 0 BMID 0 BSID 1 (BT |R/W |A64 | O |NAT AID BCT
access
Message 0 BMID 1 BSID 0 (BT ([MD SQ NAT AlD BCT
trangfer
Contyol register 0 BMID 1 BSID 1 |BT |R/W BCT AlD RA
acceps
Resgrved 1 BMID 0 BSID 0| BT * * * * Kl x| RrEFEARR
Resgrved 1 BMID 0 BSID 1| BT * Ky * * Kl x| RrEFEARR
Resgrved 1 BMID 1 BSID 0| BT 1 * * * Kl x| RrEFEAER
Answer 1 BMID 1 BSID 1 (BT ROPT RNAT [RAID ANS
Notafion:

DPT: Operation Type BCT: Byte Count

BMID: Bus Master ID MD: Mode

BSID: Bus Slave ID SQ: Sequence

BT: Bus Type RA: Register Address

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

— 18— 14576 © ISO/IEC:1999(E)

1) Operation type codes

Commands are either for order transactions, from SUT to DUT, or for answer transactions, from
DUT to SUT. There are eight command types, including Reserved. Together these are called
operation types, and are defined in a 3-bit OPT (operation type) consisting of bit O of byte 0, bit
8 of byte 1, and bit 16 of byte 2.

The OPT codes are given in Table 4.

Table 4 - OPT Code Definitions

O

—

Operation type

Memory Access

Control Space Access

Message Transfer

Control Register Access

Reserved

Reserved

Reserved

R |kr|lO|lO|FR|FP|[O|O|— T

P (PP |P[O]J]O|O|O|O
P O, |O|FRr|[OFL,r|O]|N

Answer

2) 1D (Identifier) and Bus Type (BT)

In an prder transaction, a BMID (Bus*Master Identifier) and BSID (Bus Slave Idgntifier) are sent
in bytes 0 and 1 of the information-transfer bus.

Bit 17| of byte 2 indicates the BT (Bus Type).
The semantics of each.field are as follows.

BMID| (Bus Master dentifier):
Function unit 1D of the bus master, consisting of 7 bits.

BSID |(Bus-Slave ldentifier):
Function unit ID of the bus slave, consisting of 7 bits.

BT (Bus Type):
0: 4-byte bus 1: 8-byte bus

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) ~19-

3) M

emory access

The semantics of each field are as follows.

RIW (

Read/Write):

0: Write operation by SUT to DUT
1: Read operation by SUT from DUT

A64 (64-bit Address Space)
0: 32-bit address space
1: 64-bit address space

M (M

AID (4

dify):

This signal is used in cache coherency control in a TCMP configuration. I

combination with R/W, as specified in Table 5.

Table 5 - M Bit Definition

R/W M Bus operation
0 0 Memory Write Operation
1 Cache Invalidation
1 0 Memory Read Operation
1 Memory Read Operation and Cache Invalidation

is used in

Vhen the R/W field is 0 and the M field is 1, the BCT field is invalid, so that only

commands and addresses can le transferred on the bus. Write operation
not performed. If a cache hit-occurs in another function unit, the cache is i

Note: If copyback cacheds not supported, the M field is cleared to 0.

\ccess Identifier):

An identifier used:when multiple access is made to memory. Applications
simultaneous ©peration of multiple DMA ports, or pipeline operation of a si
bort.

An example of multiple memory access operation in a split transfer bus is
Figure-6 below.

5 to memory are
hvalidated.

nclude
ngle DMA

shown in

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

— 20— 14576 © ISO/IEC:1999(E)

Shared memor Processor
board ’ board (I/0 adapter) (Shared memory)

3 : Read order
STbus Port 1
I/\[(AID=00)

Answer data

(AID=00)
\/- Read order
I/O adapter board Port 2 \
Port 1 Port 2 (AID=01) A
| | Answer dlata
Port 1
~ (AID=01
< /O BUS > /
Port2

& &

I/O Device 1 1/0 Device 2

Figure 6 - Pipeline operation

his indicates that the transaction to follow is a no-answer transaction. When this bit is set
n an order transaction, the hus slave does not perform an answer transaction in response.
However, if an error occurs-in the order transaction, an answer to indicate the error is
eturned.

NAT (]rNo-Answer Transaction):

0: Transaction with answer returned

1+Transaction without answer returned

BCT (Byte Count):

his.indicates the number of bytes of transfer data sent from SUT to DUT ¢r demanded

i in Figure 7 a). Up
to 256 bytes can be sent consecutively in one bus operation. When t="00", the number of
valid bytes transferred on the bus must equal the contents of n plus 1. For example, t=
"00" & n="00000" means 1-byte transfer, while t="00" & n="11111" means 32 bytes
transfer.
Byte alignment in case of an 8-byte bus is realized using the lower 3 bits of the address and
the BCT contents. Starting from the byte position of the first word of data as determined
by the lower 3 address bits, the number of bytes as determined from BCT is the valid data.
If the address is 8n + 3 and BCT is t="00" & n="11111" & w="0" (32-byte transfer), the
valid data is as shown in Figure 7 b) below.

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) —21-

On the various data sent in a transfer operation, a correct parity must be attached even to
invalid data.

Note, however, that in case of w="1" (used on block size transfer in general) the
arrangement of data is wrapped around at the block boundary. When the address is 8n+3
and BCT is t="00" & n="11111" & w="1", the valid data is as shown in Figure 7 (c)

below.
1 bit 2 bits S bits
BCT field W t n
(8 bits)
Avalability of d i |_) L No. of transfer bytes below
va|. ity ? wrap arou 88 EEI8V\{8352 bytes 32 bytes (n+1<bytes)
0: Unavailable 10: 128 bytes
1: Available 11: 256 bytes

a) BCT field definition

byte positon 0 1 2 3 4.5 6 7

1st data word | I I v.wt | v2|v3|wva

2nd dataword | vs | ve6 | vz f\v& | vo |vio | vi1 | vi2

block boundary
3rd data word | vi3 | via [vis | vie | vaz | vis | vig | v2o

4th data word | v21 | v22\['v23 | v24 | v2s | v2e | va7 | ves

5th data word | veg?j V3o | va1 | | [[I [
Vi: Valid
I: Invalid
b) BET and byte alignment in case of w="0"

byte positon 0 1 2 3 4 5 6 7

1st data word | v2o | v30 | v31 | v vi [v2 [v3 [v4

0

2nd dataword | vs [ve | vz | v8 | vo |vio | vi1 | vi2

block bounfdary
3rd data word | vi3 | vi4 [vis [vie | vz | vis | vie | v2o

4th data word | vz1 | v22 | v23 | vaa | vas | vae | va7 | ves /

5th data word | | [| [[[[[
Vi: Valid
I: Invalid
c) BCT and byte alignment in case of w="1"

Figure 7 - BCT field

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

—22- 14576 © ISO/IEC:1999(E)

4) Control space access

The semantics of each field are as given below.

R/W (Read/Write): same as memory access.

A64 (64-bit Address Space): same as memory access.
AID (Access ldentifier): same as memory access.

NAT (No-Answer Transaction): same as memory access.

BCT

[and address).

5) Message transfer
The spmantics of each field are as given below.

MD (Mode): Indicates the difference in message processing urgency.
0: urgent message 1: normal message

SQ (Sequence): The message semantics are specified inFable 6 below.

Table 6 - Message sequence

5Q Meaning Explanation
20 21

0 0 Single | Indicates that the message length is 256 bytes or less and the transpction
ends with*one bus operation. The receiving unit upon accepting this jous
operation notifies the processor that message receipt is complete.

0 1 First Indicates the first bus operation when the message length exceeds 256
bytes. The receiving unit state is bus operation receive pending state.

1 0 Middle~| Indicates a bus operation continuing after a First or other Migldle

operation. When Middle is received, the receiving unit state |s next
message receive pending state. When the bus operation is teceived, the
receiving unit first confirms that BMID and AID are the same | then
accepts the bus operation and waits for the next bus operatign.

1 1 Last A bus operation continuing after a First or Middle operation.| The
operation on the receiving end is the same as when Middle is received, but
since the last message is indicated, after it is received the receiving ynit

notifies the processor that message receipt is complete.

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E)

—23-—

NAT (No-Answer Transaction): same as memory access.

BCT (Byte Count): same as memory access. Note, however, that since no address is sent with
this command, the valid data is that indicated by BCT starting from byte 0 of the first data

word.

Note on message transfer parameters:

The message transfer parameters are 8 bytes of additional information sent following the
message communication commands. The operand contents include such items as the
subsystem ID in communication between subsystems. Detailed contents are left up to the

implementor

6) Cpontrol register access commands

The semantics of each field are as given below.

R/W (Read/Write): same as memory access.

BCT (Byte Count):

RA (Register Address):

shown in Figure 8 below

byte position 0

Designates the number of bytes of data to be transfered. This field consis
fo 8 bytes can be designated per bus operation.
The number of valid bytes transferred on the ius must equal the BCT contents plus 1. For
pxample, BCT = H'7 means 8-byte transfer:

Designates the register address. The-byte alignment is defined by the low
hnd the BCT contents. Starting from the byte position of the first word of d
letermined by the lower 3 RA-bits, the number of bytes as determined from BCT is the
alid data. If the address is:8n + 3 and BCT is X'6' (7-byte transfer), the valid data is as

1st data word |

2nd data word | V5

1 3 4 5 6 7
I VOl V1| V2| V3| V4
V6 I I I I I
Vi: Valid
I: Invalid

Figure 8 - RA and byte alignment

ts of 3 bits, so up

or 3 bits of RA
ata as

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

— 24— 14576 © ISO/IEC:1999(E)

7) Answer

The answer command in an answer transaction is the first information returned by DUT to SUT.
The pairing of BMID and BSID is the same as in an order transaction; but since the bus master is
a DUT, BMID is the DUT ID and BSID is the SUT ID.

The semantics of each field are as given below.

ROPT (Return Operation Type):
The OPT code sent by SUT to DUT in the order transaction is embedded in this field.

RNAT(Returm NAT):
The NAT designated in the order transaction is embedded in this field.

RAID|(Return Access ldentifier):
The AID designated in the order transaction is embedded in thisfield.

ANS (Answer code):
Answer information, consisting of 8 bits and indicating theresults of the request made in
the order transaction. Part of the field is used for statys information at the pus slave.

Definition of the remaining contents is left to the implementor.

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) — 25—

4.2.3 Transfer sequence
The transfer sequence is fixed, and the bus operation sequence depends on the type of command.

The notation used in the sequence diagrams below is as follows.
Co: Order command (in order transaction)

Di: Data
Caw:Answer command (in answer transaction)
A: Address

P Parameter

1) Memory access

a) 33-bit addressing

(write) .
NiofCo=0 | CO | DO | - |Dnt Caw [\ {8-byte bus width)
A D1 Co Dn 0
Co A DO D1 Dn-1| Dn Ccaw | (4-bytg bus width)
(write) o
MofCo=1

(cache invalidation) A (8-byte bus width)

Col| A (4-byte bus width)
read A e ——— R
read Co CAw| DO | - - | Dn-1| (g.pyte bus width)
A 0 | b1l --|opon
Co A caw| oo | p1 | -+ |pn-1| pn | (4-byte bus width)

b) 64-bit‘addressing (8-byte bus width)

c C
(Write) (@] A DO Dn-1 AW
M of Co=0 0 D1 - Dn 0
(write) Co
MofCo=1 A
(cache invalidation) U
C C . -
(read) 0 A AW) BO | -, Dn-1
0 0 D1 Dn

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E)

(4-byte bus width)

—26 —
2) Control space access
a) 32-bit addressing
(write) coloof.. Dn-1 Caw
...... (8-byte bus width)
A | D1 Dn 0
Co| A |D0 | D1 Dn-1| Dn CAW | (4-byte bus width)
(reget) € € -
O AW] DO ... bn-1 (8-byte bus width)
A 0 D1 Dn
Co A caw /| po D1 .. |pn-1| pn | <t4-byte bus yvidth)
b) 64-bit addressing (8-byte bus widthy
(wrife) Co A DO Dn-1 Caw
0 D1 Dn O
C C .
(redd) o A AW| DO | &« On-1
0 0 D1 Dn
3) Message transfer
Co DO Dn-1 Caw
P (8-byte bus width)
0 D1 Dn O
Co| P p | DO | D1 Dn-1| Dn Caw
4) Control registér-access
(wiite) ~1~€0 | DO CAW | (8-byte bus width)
O D1 O
Co | oo | D1 Caw/| (4-byte bus width)
Co Caw| DO
(read) (8-byte bus width)
0 0 D1
Co Caw | DO | D1 | (4-byte bus width)

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) —27-

4.3 Arbitration

STbus arbitration is centralized arbitration by means of the bus handler, which is configured as
indicated in 3.1 Connection Interface. Requests are made to the bus handler from each unit via
two kinds of bus request lines. The bus handler issues bus grant signals in response to these
requests.

STbus does not specify the algorithm for priority control.

4.4 Status Reports

This 1ection specifies the information on "transfer data receive status at the bus|slave side"
reporfed in answer transactions.

A status report by DUT to SUT in an answer transaction is for status indication ip response to an
order transaction. The answer codes are defined as shown in Table’7, using bits in the answer
fields

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

— 28— 14576 © ISO/IEC:1999(E)

Table 7 - Answer Code Definition

Answer code values Semantics Classification
0 1 2 3 4 5 6 |
0 0 No error Answer code defined by
0 1 No error (Lock transfer) system manager
0 0 0 Reserved (in case of no error)
0 1111 1 1 Reserved
0—0—0—0—0—90 Userdependent AnRswer-code-defined-byusey
(in case of no errgr)
1
11 1; 1 1 1 User dependent
0 0 00 0O Hardware error Errar'report defined b
0 0 0 0 0 1 lllegal command system manager
0O 00 0 1 0 Bus sequence error
0/]] 0 000 1 1 Reserved
1 1111 11 Reserved
0 0 00O 0O O User dépendent Error report defined by dser
1
11 1E 1 1 1 User dependent
1) Nolerror: This.indicates that an order transaction has been received correctly|by DUT.
2) Nolerror (Lock transfer): In a lock transfer, this indicates that an order transagtion has been
received correctly by DUT.
3) Hardware error. This indicates that a bus signal parity error has been detected at DUT.

4) lllegal command: This indicates the receipt of a bus command that cannot be accepted. This
is returned when, for example, a non-supported OPT or BT is received.

5) Bus sequence error: This indicates that DUT has detected a discrepancy between the data size
sent by SUT and the transfer data size designated in the order command, or indicates
that BS* has been asserted more than one cycle.

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E)

4.5

—29_

Data Transfer

This section specifies details of each bus operation.

A memory access write operation is explained in greatest detail as an example, while the
other operations are given in outline. The operation sequences given in this section are for
32-bit addressing. On the sequences for 64-bit addressing, refer to the operation sequences in

this s

Only

a trarn

45.1

The b
Of the
transaction, while b) and d) are for one-word memory write;and n-word memory

basic

All sy
dotte(
devia

Note
occur

The €
opera
[1]
[2]

[3]

ection plus the transfer sequences in 4.2.3.

normal operation sequences are explained here. On sequences when &rx
saction, see 4.8 Error Handling.

Memory access (write)

us sequences for a write operation in memory access are Sshown in Figure
pse, a) and c) are for one-word memory write and n-word-memory write in
format transaction.

stem bus operations are synchronized with the falling edge of the bus cloc
I lines in the figures). The figures take into account gate delay, accounting
lion from the bus clock line in the case 6f'some signals.

that the part of the figure to the right-of "Bus" indicates the timing for inforn
Fing on the bus between functiofunits.

xplanation below deals mainly with Figure 9 d) on n-word memory write (b
tion format).

When a new memory access request occurs, function unit (#0) asserE#B
issuing a bus reguest signal.

If the RQL«(#0) signal can be accepted, the bus handler asserts a bus grg
GRx (#0).to function unit (#0), granting it the bus right.

Function unit (#0) negates the REO) signal upon the assertion of §RO).

[4]

[5]

[6]

Dr occurs during

s9a)-d).
A No-answer
write in a

K (the vertical
) for the

hation

asic

DL

nt signal

FU) obtalning the pus rgnt by mea Of (F) NeXT Vallda

information on the bus in the sequengg (Command) and A (address), then

he AD

bus for two-way information transfer, and asserts B@Rd CSP signals, then sends

Di (data).

At the same time as the first information is sent, function unit (#0) asserts @&BS
transaction start) signal declaring to the other function units the start of the necessary

bus operation.

Function unit (#0) negates the £¥ignal two cycles prior to the end of the transfer

data, declaring the end of the transaction to the bus handler.

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

[7]

[8]

[9]

[10]

[11]
[12]

[13]

[14]

~30- 14576 © ISO/IEC:1999(E)

Function unit (#0) negates the BWRourst) signal one cycle prior to the end of the
transfer data, declaring the end of the transaction to the DUT (destination function
unit).

When the bus handler detects the negation of(#]) it negates GR#0), revoking
the bus right of function unit (#0).

Function unit (#1) prepares a normal\& (answer) for notifying function unit (#0) of
normal write completion, and asserts RQ#1), requesting the bus right. If error is

detected, an error answer is prepared and-R@H is asserted.

If RQH*(#1) can be accepted, the bus handler asserts a bus grant sig@#l)sR
granting the bus right to function unit (#1).

Function unit (#1) negates RA1) upon the assertion of G@1).

Function unit (#1), obtaining the bus right by means of BR), validates the AD bus,
then sends they on the bus.

Function unit (#1), at the same time as it sengg Gsserts BSwith BURx
remaining negated, declaring the start and end of the transaction.

The bus handler upon detecting the negation of &I) negates GR*(#1), refoking
the bus right of function unit (#1).

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) ~31-

Function unit(#0)

RQHLI#0)
RQLL{#0) [1] 28]
ETL#O0) 6]
(GRI{#0))
Send buffer [4 D

s o]
O

Py

eceive buffer

Bus handler \
GRL{#0) 2 [8]
GRO#1)
Bls
Bs[] [5] =
BUR[J ..
AD[00..31](] CoiD;
AD[32..63]L] CA

Fulnction unit(#1)

RQHL{#1)

RQLL{#1)
ETO#1)

GRIO#1)

ena ouirer

Receive buffer Co; D

Figure 9 a) - One-word memory write (no-answer transaction)

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

—-32-

14576 © ISO/IEC:1999(E)

Function unit(#0)

RQHLI#0)
RQLL#0)

(

ETL{#0)

GRLI#0))

[1]

Re

end buffer

ceive buffer

EE

los]

us handler
GRL{#0)

GRO#1)

(2]

[8]

(16}

[14]

>

s

URO
D[00..31]0]
D[32..63]0]

[5] —=

— i[7]

[13]

Fun

ction unit(#1)

f

(n

RQHL{#1)
RQLLI#1)
ETO#1)

GRLI#1)

end buffer

[9]

(11]

[12]
=1

Receive buffer

Co; D

Figure 9 b) - One-word memory write (basic transaction)

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) ~33-

Function unit(#0)
RQHLI#0)
RQLL{#0) [1] [3]

ETL#0) \ [6]

(GRL{#0))

$end buffer “ Co;D0 \\ ,,,,,, PDn-1

Dn

Receive buffer

Bus handler
GRL{#0) 2] /(8]

GRII#1)

s 5]
RS N

BUR[] [7]
\D[00..31]0] €0, DOp="y . Py
\D[32..63]0] LA D1y _iDnj

Fumction unit(#1

ROHI#1)
RQLL#1)
ETO#1)

GRL#1)

$end-buffer

Receive buffer CoiD0 NNn-1

Figure 9 c¢) - n-word memory write (no-answer transaction)

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

—34- 14576 © ISO/IEC:1999(E)

Function unit(#0)
RQHL{#0)
RQLL{#0) [1] (3]

ETL{#0) [6]

(GRL{#0)) I

Send buffer 4 Cao;D0 \ Pn-1

Receive buffer A

Bus handler

GRL{#0) [2] (8]

GRL{#1) [10] [14

Bus - [13]
BsO — —
BURD [7]
AD[00..31]0] Loy pn
AD[32..63][] ADY Dy

ER

Hunction unit(#1)
RQHL{#1) [9] [11]
RQLOO#1)

ETO#1) .

GRO#1)

Send buffer Can
[12] 73

Receive buffer Co DO n-1

Figure 9 d) - n-word memory write (basic transaction)

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) ~ 35—

45.2 Memory access (read)
The bus sequences for a read operation in memory access are shown in Figures 10 a) - b).

The function unit corresponding to DUT begins an operation for reading data from the
memory area indicated by the address in its own local memory.

After the read operation is complete, DUT first senda@ Canswer) and then D (read data)
to SUT.

SUT ¢hecks the £y contents and the data, and if these are normal, begins arr-operation for
writing the read data to its own local memory. When the write operation is'eomplete, the
memaory access read operation is ended.

If the |Caw contents contain error, or if error is detected in the SUTlocal memory write
operdtion, this is notified to the software as a bus error in general,

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

~ 36— 14576 © ISO/IEC:1999(E)

Function unit(#0)
RQHL{#0)
RQLL{#0)

ETL{#0) L

(GRLI#0)) —

Send buffer Co

Receive buffer

Bus handler

GRLI#0)

GRII#1)

Im

jUS

BsSl i
BURO
AD[00..31]0]
AD[32..63]0]

ig

Flinction unit(#1) \
RQHL{#1)

RQLL{#1) \
ETL#1)

GRO#1)

Send buffer

CaniD

Receive buffer Co

Figure 10 a) - One-word memory read

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) ~37-

Function unit(#0)
RQHL{#0)
RQLL{#0)

ETL#0) o

(GRL{#0))

Send buffer Co

Receive buffer DO Pn-1

Bus handler

GRL{#0)

GRO#1)

Bus
BsO I
BUSO

AD[00..31]00
AD[32..63]00

{-Aw; DO, |/ P07
U, D1 J (DN

>3

n

Linction unit(#1) \

RQHL{#1)
RQLO#1) \

ETO#1)

GRO#1L)

Send buffer Cawi DO Pn-1

Receive buffer Co

Figure 10 b)- n-word memory read

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

~ 38— 14576 © ISO/IEC:1999(E)

4.5.3 Control space access (write)
The bus sequence for a write operation in control space access is shown in Figure 11.

The function unit corresponding to DUT writes data to the control space indicated by the
address in its own local memory.

After the operation is complete, DUT sendssQanswer) for the operation to SUT. SUT
checks the @y contents, and if normal, ends the write operation to the control space
address:

If the |Caw contents contain error, this is notified to the software as a bus error.

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E)

—-39-—

Function unit(#0)
RQHL{#0)
RQLL{#0)

ETL#0)

(GRL{#0))

Send buffer

Receive buffer

Co;DO0

\ ,,,,,,, Dn-1

\Dn

AW

Bus handler
GRL{#0)

GRO#1)

Bus

BsO
BURD
AD[00..31]00
AD[32..63]00

1o, DO

L A4DL

_1Dn

0
>
=

[
L L

n

Linction unit(#1)

RQHLI#1)

RQLL{#1)
ETL{#1)

GRO#1L)

Send buffer

CAW

Receive buffer

CoDO0

Hn-1

Dn

Figure 11 - n-word write: control space access

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

— 40— 14576 © ISO/IEC:1999(E)

4.5.4 Control space access (read)
The bus sequence for a read operation in control space access is shown in Figure 12.

The function unit corresponding to DUT begins an operation for reading data from the
control space area indicated by the address in its own local memory.

After the read operation is complete, DUT first senda@ Canswer) for the operation and
then D _(data) to SUT.

SUT ¢hecks the £y contents, and if these are normal, begins an operation fonWriting the
read ¢lata to its own local memory.

If the |Caw contents contain error, or if error is detected in the SUT lecal memory write
operdtion, this is notified to the software as a bus error.

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) — 41—

Function unit(#0)
RQHL{#0)
RQLL{#0)

ETL#0) 1

(GRL{#0))

Send buffer Co

Receive buffer DO Pn-1

Bus handler

GRL{#0)

GRO#1)

Bus

BsO T —
BURD
AD[00..31]00
AD[32..63]00

CAW DO, L/ Pn-7
U, D1 J (DN

>[5

n

Linction unit(#1) \
RQHLI#1)
RQLL{#1) \
ETL{#1)

GRO#1L)

Send buffer Cawi DO Pn-1

Receive buffer Co

Figure 12 - n-word read: control space access

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

— 42— 14576 © ISO/IEC:1999(E)

4.5.5 Message transfer
The bus sequence for a message transfer operation is shown in Figure 13.

The DUT designated by BSID in they@command) begins a data write operation as
instructed by MD.

After the write operation is complete, DUT returnsgyQJanswer) for the operation to SUT.

SUT ¢heckshe Ay CONtents, and If these are normat, ends the mesSade transrer operation.

If the |[Caw contents contain error, this is notified to the software as a bus error.

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) — 43—

Function unit(#0)
RQH [(#0)
RQLL{#0)

ETL#O)

(GRL{#0))

Send buffer Coi P (DO \ pn-1

Receive buffer

Bus handler

GRL{#0)

GRO#1)

Bus
BS[] —
BUR[O
AD[00..31]] 1Co PgN0;) . Poy
ADI[32..63]] 0P, DY,

0
>
g

o
=]
I_DI_“
L

N

nction unit(#1) /\

RQHLI#1)

RQLL{#1)
ETL{#1)

GRO#L)

Send buffer

CAW

Receive buffer Co; P {DO Pn-1

Figure 13 — n-word message transfer

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

4.5.6

—44 — 14576 © ISO/IEC:1999(E)

Control register access (write)

The bus sequence for a write operation in control register access is shown in Figure 14.

The function unit corresponding to DUT writes data to the control register indicated by RA in
the Co (command).

After the operation is complete, DUT returns gyc(answer) for the operation to SUT.

SUT ¢hecksthe Ry contents, and if these are normat, ends the controt Tegister
operdtion.
If the |Caw contents contain error, this is notified to the software as a buserror.

ccess write

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) — 45—

Function unit(#0)
RQHL{#0)
RQLL{#0) y

ETL{#0)

(GRL#0))

$end buffer
D1

Receive buffer

BE

Bus handler

GRLI#0)

GRII#1)

X

Bys

3s0] —
BUR]
\D[00..31]0] Co, DO,
\D[32..63]0] (0 N1

bl

Fumction unit(#1 /\
RQH [(#1)
RQLL{#1)
ETO#1)

GRII#1)

$end buffer C AW

Receive buffer Co; DO

Figure 14 - One-word write: control register access

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

4.5.7

— 46— 14576 © ISO/IEC:1999(E)

Control register access (read)

The bus sequence for a read operation in control register access is shown in Figure 15.

The function unit corresponding to DUT reads data from the control register indicated by RA
in the Go (command).

After the read operation is complete, DUT returnsagy@answer) for the operation.

SUT

CNECKS e Ayy contents, and If these are normat, fatches e read data an

contrgl register access read operation.

If the

Caw contents contain error, this is notified to the software as a bus-error.

ends the

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) — 47—

Function unit(#0)
RQHL{#0)
RQLL{#0)

ETL#0) o

(GRL{#0))

Send buffer Co

Receive buffer

Bus handler

GRLI#0)

GRII#1)

Bus
BsO —
BUR

AD[00..31]00
AD[32..63]00

55

RQHLI#1)
RQLL#1) \
ETO#1)

Hunction unit(#1) \

GRO#1)

Send’buffer

Bt

0

Receive buffer Co

Figure 15 - One-word read: control register access

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

4.6

— 48 — 14576 © ISO/

Lock Operations

IEC:1999(E)

STbus supports lock transfer operations, by which a function unit maintains exclusive right to the
bus, for use in consecutive information transfer operations. For example, the lock transfer is used
for a Test & Set operation (a modified read and write operation), etc.

The bus sequence for a lock transfer operation is shown in Figure 16. In the example shown in
this figure, read and write bus operations take place consecutively during the time aigGd
is asserted.

SUT
bus ri

The L
depet
howe

transaction. In this way exclusive right to the bus is guaranteed only during the

assel

While
reque

GRx ¢
execy

Asm

transimission side, a lock reception-€ode should be provided to the answer code

Note
show

must assert both the R®kignal and the ETsignal simultaneously when SUl
ght for a lock transfer, even if the order transaction has one cycle transfer

nds on the timing by which the processor ends the exclusive eonhtrol instrug
ver, that the LCKsignal must continue to be asserted until SUT completes
fed.

the LCKs signal is asserted, the bus handler does not assernnG&sponse to
st from another function unit.

hould be asserted, however, in responsérto a<RE4tIest, so any function ur
te an answer transaction (See AnnexB).

that the way of lock transfer to cache data under the EM (Exclusive and M
n in Annex C.

[requests the
See Figure 16).

CKx signal is asserted by SUT at the same time as thesigB8al. The\LCK negate timing

tion. Note,
its last
timad. CK

a RGL

it can

pans to notify the acknowledgment of the lock transfer on the reception side to the

s (See Table 7).

pdified) state is

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) — 49—

Lock transfer

Read Write

>
> «

Function unit(#0)
RQH* (#0)
RQL* (#0) A

ET* (#0) [refer to (1) below]

(GR*(#0)) .
Send buffer 0 Ao DO
XK

D1

Regeive buffer Cawi DO

[oF

Blis handler \
SR* (#0) A
CR* (#1) 1

[refer to (1) below]

Bus

BS*

BUR*

| CK*

AD[00..31]* DG £0,00 AW

AD[32..63]* |

Fundtion unit(#1) \ \
RIQH* (#1)

ROL* (#1)

ET (#1)

GR* (#1)

>

Sénd buffer Aw DO

O

Redeive buffer Co, Co;D0
LA A,D1

(1) Even if another FU#2 asserts RQ#2), the bus handler should not assert@R) [to
FU(#2)-next bus cycle of assertion of GR0) to FU(#0).

ition of the

lock signal assertion.

For this reason, one cycle transfer in lock transfer operation is executed like two cycle
transfer. That is, it should be specified to assert thesigmal with the RQksignal
simultaneously.

Figure 16 - Bus lock transfer

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

50—

4.7 Cache-related Operations

14576 © ISO/IEC:1999(E)

This section specifies system bus operations that support a copyback cache scheme.

Only the operation sequences on the system bus are described in this section. For cache state
transitions after each bus operation, refer also to Chapter 5 on Cache Coherency Control.

As cache coherency support functions are optional, users may not necessarily implement the
functions.

4.7.1

In prg
Snoof

1) Mg

Whern
cachg
writes
invali

commnand, it would be possible to realize this function by executing a memory w

cache
write

Wher
readif

Wher
set to
invali

2) Cache invalidation in Shared & Unmodified state

Wher
state,

Cache invalidation

cessor bus interface control, when memory write commands are regularly
D) and the write address is found in cache memory, cache invalidation bec

dified read operation

the memory address to which the processor attempts a write is not found
, the processor issues a memory read command and reads the data from
in its cache. In this case the processor's cache 'state is modified, so it is

Jate the cache memory of other processors. After the processor executes

invalidation, as explained in 2) below. “However, to avoid sending unnecs
commands on the bus, the M bit is-attached to the memory access commé

the processor must access megmory due to a cache write miss, the M bit i
ng from memory.

another processor snoops the bus and performs a memory read bus ope
1 it performs address-monitoring. If a cache hit occurs in this case, that c
jated.

a block registered in the copyback cache of a function unit is in Shared &
that block is written over, and the following command method is used for

monitored (bus
hmes necessary.

in the processor
main memory, ther
necessary to

a memory read
rite command for
pSsary memory

and.

s set to 1 before

ration, if the M bit is
ache entry is

Unmodified (SU)
nvalidating the

cach

of‘other processors.

A processor wishing to write over the block in SU state sets the M bit to 1 in the memory write
command, and sends only the command and address information on the bus.

The other processors recognize the memory write command and invalidate their cache. The sole
purpose of this bus operation is to invalidate cache memory, so no memory write is performed.

The sequence for cache invalidation is shown in Figure 17. In the case of a cache invalidation
command, there is no particular bus slave. If, however, parity error occurs during the order

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) — 51—

command or address transfer, the bus handler detects the error. Also, if a retry operation as
described in 4.7.2 occurs for the cache invalidation command, the cache invalidation operation is
stopped. After the bus is obtained again, the part updated by the processor is written to shared
memory.

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

52—

14576 © ISO/IEC:1999(E)

Function unit(#0)

RQLLI#0)
ETO#0)

(GRL{#0))

Send buffer

Receive buffer

Co

Bus handler

GRL{#0)

Bus
BsO
BUR
AD[00..31]00
AD[32..63]0]

Shared memory

Receive buffer

Function unit(#1)

Sénd buffer

Receive buffer

Figure 17 - Cache invalidation

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) ~ 53—

4.7.2 Retry indication

In a copyback cache method, cache data are updated only in the local cache of a processor and nc
in a shared memory to alleviate the load on the system bus. If a local cache hit occurs when that
block is read by another processor or I/0O adapter, it is necessary for the read data to be sent from
the local cache.

The sequence for a retry indication is shown in Figure 18.

Supaﬁdmmmmwmmmm&mmemory block read
commpand, but the access address was found in the cache of function unit (#1).and the state of that

cache data is Exclusive & Modified (EM); in other words, the most recent block gata is registered
only ip the cache of function unit (#1). In this case function unit (#1) asserts-aggjnal and
perfofms the writeback of that cache data.

The retry signal RTY is asserted two cycles after the first cycle.(command transter cycle). In the
example in this figure, a retry indication is made in response.toa read order.

Contrpol is similar even in the case of write-through operation.

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

—54—

14576 © ISO/IEC:1999(E)

Function unit(#0)

RQLQ#0)
ETI#0)

(GRL{#0))

Send buffer

Receive buffer

RTYreceived

Co

Bus handler

GRLI#0)

Bus
BsSO
BURD
AD[00..31]0]
AD[32..63](]

Shared memory

Receive buffer

RTY Lfeceived

Function unit(#1)

Send-buffer

Raocaiva hiffar
ey e-PDurtet

RTYLkent

Figure 18 - Retry indication

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) - 55—

4.7.3 Copyback and steal operations after retry indication

When the function unit corresponding to SUT receives a retry signal, it performs a retry after
waiting for a predetermined holding interval to allow for copyback. Prior to the retry operation a
copyback operation is performed by the function unit that asserted the retry signal.

The sequence for a copyback operation after a retry indication is shown in Figure 19. In this
figure function unit (#1), which asserted the retry signal, performs a copyback of one block (32
bytes) of cache data in Exclusive & Modified (EM) state to shared memory.

The f'lgure also shows the timing for a steal operation by function unit (#0). TFhig function is
optional, and can be used only by a system provided with-asgjral.

In a slystem that does not support the steal inhibit signal, function unit-(#0) retrigs access to shared
memory after the copyback operation.

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

— 56— 14576 © ISO/IEC:1999(E)

Function unit(#0)

RQLL(#0)
ETL{#0) ¥

(GRL{#0))

O
q

o el o ff
OCTTIU UUTIcCt

Steal operation
Receive buffer Co;D0; D2D4;D6

A iD1;DB3; D5D7

RTY Lfeceived 0

Bus handler 3

GRLI#0) A

GRLI#1)

Bus
BS[] - -
BUR[]
AD[00..31]0] .Co, Co; D0;D2D4/D6
AD[32..63](] LA 1A |D1,D3,!D5| D7,

Shared memory

Receive buffer Co Co; DO D4;D6
LA | A iD1jD3{D5D7
RTY Lfeceived I

Function unit(#1) \

RQLEWL) \
ETL(#1)

Co, D0j D2 D4 D6
Send buffer

Receive buffer %s

RTYLkent

Figure 19 - Copyback and steal operations after retry indication

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) — 57—

4.7.4

Steal inhibit operation

As explained in Chapter 5, steal operations may be inhibited for a certain interval for the sake of
maintaining cache coherency. The bus operation sequence for steal inhibit indication is shown in
Figure 20.

Function unit (#0) performs a read access. Next, function unit (#1), which holds the cache data in
EM state at the address accessed by function unit (#0), assertsasigmal. At this time the
STH signal is not asserted.

Supppse function unit (#2) performs a modified read of the same block before-¢

perfo
timing

functipn unit (#0) is able to perform a steal but steal is inhibited for function unit

If botih units were permitted to perform a steal, a cache data diserepancy would
two cppies of the same block; so in the above sequence-aighal is asserted at th

acces

med by function unit (#1). Function unit (#1) asserts a retry signal, and w
asserts a RT¥signal. If function unit (#1) performs a copyback .aperation

s by function unit (#2), indicating that a steal is not allowed.

ppyback is

th the same
after that,
(#0).

result between the
e time of

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

— 58— 14576 © ISO/IEC:1999(E)

Function unit(#0)
RQLL{#0) y
ETL{#0) L

Send buffer

>l8

Receive buffer Coj DO, D2j D4;D6
A {D1;D3i D5;D7

RTY Lfeceived -

STl feceived

| —
—]
| —

Steal pperation|enabled

Bus handler
GRLI#0)
GRO#1) \
GR#2) A A l

pa

Bus

AD[00..31]0]
AD[32..63]0]

jCO] D0|D2 /D4|D6|
L A1 DYy D3| D5 D7,

B
i

>
>

Shared memory 0

Receive buffer Co; DO II]Z, D4,D6

BE
BE

RTY Lfeceived — [

Function unit(#1)
RQLL#1)
ETL#1)

Co; D0 D2, 04, D6

Send buffer

Receive buffer Co LCO

RTYLsent I

STILsent

Function unit(#2)
RQLO#2)
ETO#2) <

— [l

Send buffer

Co D0;D2 jD4{D6
A {D1; D3 D5; D7

Steal operation inhibited

Receive buffer

RTYfeceived

STl feceived

Figure 20 - Steal inhibit operation

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) ~ 59—

4.8 Error Handling

This section specifies the operation when an error is reported in an answer transaction.

48.1

Handling errors notified in answer

An error report in an answer is issued by DUT.

When error is detected in an order transaction in a bus operation, DUT notifies SUT of the error

OcCcur,

SUT

transaction again.

The €

The €

ence hy means of the answer transaction

eceives the report and performs error processing. If necessary, SUTmay

rrors detected by DUT are as follows (See Table 7).
- Hardware error
- lllegal command
- Bus sequence error

rror report operation sequence when DUT detects error is shown in Figure

perform the order

21.

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

- 60—

14576 © ISO/IEC:1999(E)

Function unit(#0)
RQHL{#0)
RQLL{#0)

ETL#0)

(GRL#0))

Send buffer

Receive buffer

Co

DO

D2

D6

D1,

D3

D7

AW

Bus handler
GRL{#0)

GRO#1)

Bus
BsO
BURD
AD[00..31]00
AD[32..63]00

1Co4P0 D2 D4,D6

1~AY D1y D3D5 D7

Function unit(#1)

RQHO(#1)

RQLLI#1)
ETO#1)

(GRO#1))

Send buffer

1~ AW

Receive buffer

DO

D2

D4

D6

D1

D3

D5

D7

Error report

Figure 21 - Error report in answer transaction when DUT detects error

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) — 61—

4.8.2 Other error detection

1) GRTOT (Grant Time Out)

Error is detected when SUT is unable to obtain the bus even after the prescribed waiting time has
expired.

The sequence is shown in Figure 22.
GRTOT

Function unit(#0)
RQHL{#0)
RQLL{#0)

ETL#0)

(GRL{#0))

Bus handler

GRLI#0)

GRLI#1)

Figure 22 - When_function unit (#0) detects time out

2) ASTOT (Answer Time Out)

Error|is detected when SUT.is.unable to receive answer information even after the prescribed
waiting time has expired.

The grrors in 1) and 2),above are detected by a bus interface control part (BIC) jn each function
unit. BIC may record the type of error (GRTOT or ASTOT) and aborts the bus gperation.

The léngth of-waiting time is left as a user-dependent matter.

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

— 62— 14576 © ISO/IEC:1999(E)

5. Cache Coherency Control

This chapter explains the cache coherency operations in STbus, for maintaining consistency
between the contents of a shared memory and those of a cache memory in each function unit
when SThbus is used as a memory bus in a TCMP (tightly coupled microprocessor) system, etc.

Cache coherency is maintained in block data with a block size of 32 bytes.

As cache coherency support functions are optional, users may not necessarily implement the
functions.

51
The fq

G
E
W
m
s

SThu

specifications for write-through operation also include the minimum necessary s

mixed

5.2

Each
block

Cache Control Methods

llowing two cache control methods are supported in STbus.

rite-through (consisting of the two states Invalid (I) and Shared & Unmodif

rite data from the processor or instruction execution partis reflected direc

opyback (consisting of the three states Invalid (1), Shared & Unmodified (S
xclusive & Modified (EM))

rite data from the processor or instruction execution part is not reflected d
emory, but is updated only in the cache.<Cache memory with three intern
ipported.

5 also supports systems that use a combination of both methods. For this
use of a copyback cache scheme.

Cache Block Attributes

function unit canshave its own cache. Each cache consists of a number of
IS managed hy the following attributes.

I: Thexdata registered in the block is invalid.

SU:.<The data registered in the block matches shared memory. It is poss
more caches to have the same block.

ied (SU))

ly in memory.

U), and

rectly in
bl states is

reason, the
pecifications for

blocks, and each

ible for two or

EM: The data registered in the block is the most recent data, and differs from the

contents of shared memory. Only one block may exist in this state,
shared by other caches.

and it is not

To support the configuration of a copyback cache scheme using a split transfer bus, the following
transient access states are defined in addition to the above cache block attributes.

Isy: Transient state during transition between | and SU, from the issuing
until an answer is received.

Iem: Transient state during transition between | and EM, from the issuing
read order until an answer is received.

of a read order

of a modified

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576

© ISO/IEC:1999(E) — 63—

EMsy: Transient state during transition between EM and SU, from the issuing of a retry

indication by another processor until copyback of the data is performed. This state
occurs when a read access by another processor takes place and the most recent data
in EM state is held in the cache of the local processor.

EM,: Transient state during transition between EM and I, from the issuing of a retry

5.3

indication by another processor until copyback of the data is performed. This state
occurs when a write access by another processor takes place and the most recent
data in EM state is held in the cache of the local processor.

noarationa-on-Syvatanm DR
~J U =4

This 9
bus.

Fa¥
P\al ULV I 1O UIT

ection explains the relation between cache operations and the commands| on the system

The system bus commands are shown in the table below. They are\realized by|different bit

comb

NDTE See Figure 17 on the sequence for cache invalidation.

nations in the R/W and M fields in the memory access commands.

Table 8 - System Bus Command Types

R/W M Bus operation
0 0 | Write command
1 Cache invalidationicommand (ClI)
1 0 | Read command
1 Modifiedfead command

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

— 64— 14576 © ISO/IEC:1999(E)

1) Issuing system bus commands

The issuing of system bus commands relates to CPU operation. This relation between CPU
operation and each of the system bus commands is illustrated in Figure 23.

Note that system bus commands are affected by the cache control method or by the block
attributes of cache data in the access area.

CPU Cache hit End
read _ | Cache _
request access
System bus
~ | Cachemiss | — Read command
(write command) *1

(1) System bus

- Write command

System bus
Cache invalidation

Cache hit 3)

- - command
CPU
write Cache (4)
request [— | access N End
System bus

@)

Write command

- Cache miss
System bus
) Modified read
- command

(write command) *1

(1) Write-through cache

(2) Copyback cache(l-attribute data)
(3) Copyback cache(SU-attribute data)
(4) Copyback cache(EM-attribute data)

*1: Replace operation: An operation for registering new data in cache memory. In the case of EM-attribute
data in a copyback cache, copyback must be performed before new data registration.

Figure 23 - Relation between CPU operation and commands on system bus

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) — 65—

2) Receiving system bus commands

In order to maintain cache coherency, each unit monitors the system bus commands issued by

other

units. This command monitoring is called a bus snoop operation.

With a write-through cache the following operations occur.

- Write command by another unit
- Cache invalidation command by another unit

<> That block is invalidated
<> That block is invalidated

D a cache area to
an order issued for
nhibition.

tribute block,
Dr retry

does not include

puffer full or

barity error.

- Read command by another unit => No action

- Modjfied read command by another unit = That block is invalidated

In the|case of a copyback cache, if a unit has EM-attribute data correspanding t

which| access is made by another unit, and an answer is pending in fgsponse to

just that area, it is necessary to perform retry indication and, if supported, steal |

Details of these operations are given below in 5.4 and 5.5.

5.4 Retry Indication

A retry indication is an operation for temporarily suspending access to an EM-at

wheni|that block is being accessed by an external'device. A Bifjial is provided f

indicgtion.

A RTY=* signal is asserted under any of the following four conditions.

1) When another function unit accesses cache data in EM state.

2) When another function upit-accesses cache data in a transient state. (This
sy state when another unit reads the same data.)

3) When other function units receiving a cache invalidation command detect
parity error.

4) When otherfunction units performing snoop operation detect buffer full or |

The blus sequence for a retry indication is shown in Figure 18.

A unitreceiving a retry indication performs the retry after waiting for a fixed inter

val so that

access can take place after copyback is complete. The length of the wait interval and the number
of retries are user-dependent matters.

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

— 66— 14576 © ISO/IEC:1999(E)

5.5 Steal Operation

A steal operation is possible only in a system that supports the STI* (steal inhibit) signal. The
explanation that follows does not apply to systems that do not support this function.

A function unit must satisfy the following conditions to be able to perform a steal operation.

1)

2)

In accessing the same area prior to the steal, the unit must have received a retry indication

two cycles after issuing an order.

In the cycle in which the retry indication was received, a STI* signhal cannot have been

sserted.

A steal operation occurs when copyback to shared memory is performed by’a fynction unit with
an ENl-attribute block, and a function unit that meets the above conditiens recei

data ¢

bus afcess.

The bjus sequence for copyback and steal operations after a retry indication is g

A STIf signal is asserted under the following conditions.

1)

2)

3)

4)

¢ommand by another function unit (y), and &’third function unit (z) issues a

operation.

Vhen a retry indication was madetin response to a memory write comman
function unit accesses a block-for which copyback is not complete.

another function unit.

\Vhen a block forawhich an answer is pending to a memory read command
modified read command issued by another function unit.

NOTE| A retry indication is never caused by the assertion of aRighal (condition 1) alone, so a

operat

steal, if must itself perform a retry operation after waiting for a fixed interval.

es the copyback

n the system bus at the same time as shared memory. Itis aiway of reducing unnecessary

Jven in Figure 18.

)Vhen one function unit (x) makes a retry indication in response to a memaoyry read

modified read

¢ommand for a block for which functionunit x has not yet completed its copyback

d, and a third

\Vhen a block for which ar-answer is pending to a modified read command is accessed by

is the object of a

steal

on is notnecessarily possible when a retry indication is received. When a function unit cannot perform a

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

14576 © ISO/IEC:1999(E) — 67—

5.6 Cache Data Management and State Transition
5.6.1 Write-through cache

A cache in a function unit must be equipped with a bus snoop function in order to maintain
coherency with shared memory. That is, all function units that share the same memory must be
able to monitor command and address data on the system bus, and must invalidate affected
entries whenever data that is updated in shared memory corresponds to a block in cache.

The same applies to cache invalidation and modified read commands.

Wherwrite-through and copyback schemes are both used in the same Sysiem, retry operation
must pe supported to ensure that read and write operations will take place in-the most recent data
block] The reason is that when a RT&Ignal is asserted in response to a memory|access, a
functipn unit with a write-through cache must be able to retry the read/write prodessing on the
bus.

Write{through cache data is managed using the following two.internal cache states and one
transient state.

1)

Invalid)

The latest data has not yet been registered in;eache memory. In this state there is no reaction
tq commands or addresses on the system:bus.

I response to a write request from a. CPU, the designated block is not read| Write data is
written to the external shared memary only.

When system reset takes place; all blocks must be in this state.

2) SU (Shared & Unmodified)

Valid data is registered for the entry. Since it is a write-through cache, the gontents always
mjatch those of the'external shared memory.

In response to.a write request from a CPU, the cache is written over and al§o shared memory
ig written_over via the system bus.

3) Iguli="SU)

Blockreceipt s pending duetoareadmiss.—The btockattribute remaims tinvalid). Itis
necessary to monitor the system bus to determine whether there is any access to the same
block. Retry indication is made in response to any access by other function units other than
a read access. A steal inhibit indication (optional) is made in response to a block read in the
case of a write miss by another function unit.

https://iecnorm.com/api/?name=041ce65ca59a69a7747ed4374eeb2b15

