

IEC PAS 62883
Edition 1.0 2014-03

PUBLICLY AVAILABLE
SPECIFICATION
PRE-STANDARD

The universAAL framework for user interaction in multimedia AAL spaces

IE
C

 P
A

S
 6

28
83

:2
01

4-
03

(e
n)

®

colour
inside

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

 THIS PUBLICATION IS COPYRIGHT PROTECTED
 Copyright © 2014 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or
your local IEC member National Committee for further information.

IEC Central Office Tel.: +41 22 919 02 11
3, rue de Varembé Fax: +41 22 919 03 00
CH-1211 Geneva 20 info@iec.ch
Switzerland www.iec.ch

About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue
The stand-alone application for consulting the entire
bibliographical information on IEC International Standards,
Technical Specifications, Technical Reports and other
documents. Available for PC, Mac OS, Android Tablets and
iPad.

IEC publications search - www.iec.ch/searchpub
The advanced search enables to find IEC publications by a
variety of criteria (reference number, text, technical
committee,…). It also gives information on projects, replaced
and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published
details all new publications released. Available online and
also once a month by email.

Electropedia - www.electropedia.org
The world's leading online dictionary of electronic and
electrical terms containing more than 30 000 terms and
definitions in English and French, with equivalent terms in 14
additional languages. Also known as the International
Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary
More than 55 000 electrotechnical terminology entries in
English and French extracted from the Terms and Definitions
clause of IEC publications issued since 2002. Some entries
have been collected from earlier publications of IEC TC 37,
77, 86 and CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication or
need further assistance, please contact the Customer Service
Centre: csc@iec.ch.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

mailto:info@iec.ch
http://www.iec.ch/
http://webstore.iec.ch/catalogue
http://www.iec.ch/searchpub
http://webstore.iec.ch/justpublished
http://www.electropedia.org/
http://std.iec.ch/glossary
http://webstore.iec.ch/csc
mailto:csc@iec.ch
https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

IEC PAS 62883
Edition 1.0 2014-03

PUBLICLY AVAILABLE
SPECIFICATION

PRE-STANDARD

The universAAL framework for user interaction in multimedia AAL spaces

INTERNATIONAL

ELECTROTECHNICAL

COMMISSION V
ICS 13.180; 33.160

PRICE CODE

ISBN 978-2-8322-1452-7

® Registered trademark of the International Electrotechnical Commission

®

 Warning! Make sure that you obtained this publication from an authorized distributor.

colour
inside

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

 – 2 – IEC PAS 62883:2014  IEC 2014

CONTENTS

FOREWORD ... 4
INTRODUCTION ... 6
1 Scope .. 8
2 Normative references .. 9
3 Terms, definitions and abbreviations ... 9

3.1 Terms and definitions .. 9
3.2 Abbreviation .. 12

4 The Specification of the universAAL UI Framework .. 12
4.1 Overview... 12
4.2 Analysis of the relationships between UI Handlers and I/O Channels 13
4.3 Dialog descriptions ... 15
4.4 The Adaptation Concept.. 18

4.4.1 Overview ... 18
4.4.2 Responsibilities of Applications .. 18
4.4.3 Responsibilities of UI handlers ... 19
4.4.4 Responsibilities on the brokerage layer ... 20

4.5 Provisions of the UI Framework .. 22
4.5.1 Introduction ... 22
4.5.2 The UI Bus and its brokerage protocols ... 22
4.5.3 The dialog manager and its role in assisting the UI Bus 28
4.5.4 The Resource Manager ... 30

Annex A (informative) Use cases ... 31
A.1 Use Case: Supporting rich human computer interaction .. 31
A.2 Use Case: Healthy Lifestyle Service Package Use Case (universAAL) 32

Annex B (informative) An Overview of the universAAL Project ... 33
Bibliography .. 35

Figure 1 – Paradigm shift from HCI to HEI .. 6
Figure 2 – logical separation of application and presentation layers .. 7
Figure 3 – The scope of the specified UI framework marked by the green colour 8
Figure 4 – The notion of AAL spaces .. 9
Figure 5 – The need of smart environments to utilize channels for bridging between the
physical world and the virtual realm .. 10
Figure 7 – The notion of a smart environment ... 11
Figure 8 – An open system for plugging in applications and UI handlers independently
from each other .. 13
Figure 9 – Channel binding by I/O devices .. 13
Figure 10 – The notion of a driver with the case of a UPNP-aware driver 14
Figure 11 – The case of a universAAL aware driver .. 14
Figure 12 – Possible relationship between UI handlers and drivers 15
Figure 13 – The dialog package based on the notion of a form ... 16
Figure 14 – A possible graphical visualization of the mapping between dialog types
and the predefined standard groups .. 17
Figure 15 – The universAAL framework for supporting adaptivity, which builds on top of
the universAAL context and service buses (see footnote 4) .. 18

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

IEC PAS 62883:2014  IEC 2014 – 3 –

Figure 16 – A model for describing access impairments .. 20
Figure 17 – Summary of the adaptation parameters .. 21
Figure 18 – The components comprising the universAAL UI framework 22
Figure 19 – The main messages exchanged on the UI Bus ... 23
Figure 20 – The notion of a UI request as constructed by applications 23
Figure 21 – Overview of the sequence of actions when the priority check is positive 24
Figure 22 – The case of switching to a new UI handler when handling changes in the
context .. 25
Figure 24 – The abstract class to be extended by applications that want to send UI
requests to the UI bus ... 28
Figure 25 – The abstract class to be extended by UI handlers that accept UI requests
forwarded by the UI bus for rendering ... 28
Figure 26 – The interface of the UI Bus ... 28
Figure 27 – Access to the resources managed by the RM ... 30
Figure B.1 – Project ID Card ... 33
Figure B.2 – The three pillars of the universAAL platform .. 34

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

 – 4 – IEC PAS 62883:2014  IEC 2014

INTERNATIONAL ELECTROTECHNICAL COMMISSION

THE UNIVERSAAL FRAMEWORK FOR USER
INTERACTION IN MULTIMEDIA AAL SPACES

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

A PAS is a technical specification not fulfilling the requirements for a standard, but made
available to the public.

IEC-PAS 62883 has been processed by IEC technical committee 100: Audio, video and
multimedia systems and equipment.

The text of this PAS is based on the
following document:

This PAS was approved for
publication by the P-members of the
committee concerned as indicated in

the following document

Draft PAS Report on voting

100/2189/PAS 100/2228/RVD

Following publication of this PAS, which is a pre-standard publication, the technical committee
or subcommittee concerned may transform it into an International Standard.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

IEC PAS 62883:2014  IEC 2014 – 5 –

This PAS shall remain valid for an initial maximum period of 3 years starting from the
publication date. The validity may be extended for a single period up to a maximum of 3 years,
at the end of which it shall be published as another type of normative document, or shall be
withdrawn.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct
understanding of its contents. Users should therefore print this document using a
colour printer.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

 – 6 – IEC PAS 62883:2014  IEC 2014

INTRODUCTION

Ambient Assisted Living (AAL) strives to ensure the independence, safety, wellbeing and
autonomy of users by using ICT, including multimedia systems and equipment and audio /
video communication, for creating intelligent living environments that react to the needs of
users by providing relevant assistance. Such intelligent environments can be labelled as AAL
Spaces, which are characterized by a number of devices that can be stationary, mobile or
embedded within other objects. Multiple users can find themselves in an AAL space
simultaneously, possibly moving around within the AAL space, and entering and leaving it
dynamically. These characteristics introduce new challenges when it comes to handling
interaction with users in AAL spaces.

With the assumption that people are surrounded by highly distributed systems of networked
interactive devices, AAL intensifies the paradigm shift from Human-Computer Interaction (HCI)
to Human-Environment Interaction (HEI). One of the main challenges of HEI is to keep the
multiplicity of functional units hidden to humans while making the functionality provided by
them easily available based on natural ways of interaction. Instead of controlling each device
separately, users should be able to interact with a whole device ensemble as one single unit
and articulate goals instead of looking for functionality at the level of each single device
separately (Figure 1).

Figure 1 – Paradigm shift from HCI to HEI

Another important challenge for designers and developers of systems in AAL spaces is that
interaction with applications can take place through a variety of devices at different locations
with different capabilities in terms of serving a single user privately or not, supported
modalities, modality-specific parameters such as screen size and resolution, power
consumption, etc., which implies the need in AAL spaces to logically separate the application
layer from the presentation layer (Figure 2).

Consequently, applications have to use abstract user interfaces that are device-, modality-,
and layout-neutral and allow to postpone the rendering of the user interface to the execution-
time, which makes it possible to interact with users in a personalized and situation-aware way.
The separation of concerns also facilitates the creation of clean programming interfaces
based on an open and flexible architecture that have to enable the plug-and-play of both
applications and user interaction handlers (UI handlers), and allows UI handlers to serve
arbitrary applications.

The resulted openness complements the openness supported by IEC 62481-2 that enables
the sharing of multimedia content and streams within an ensemble of devices. It adds the

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

http://www.beuth.de/de/norm/din-iec-62481-2/103894176?SearchID=512756221
https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

IEC PAS 62883:2014  IEC 2014 – 7 –

perspective of sharing the input and output channels provided by those devices1 to the DLNA
perspective of content sharing.

Figure 2 – logical separation of application and presentation layers

1 This understanding of the term I/O channel is based on the actual roles of devices that enable interaction with

human users: a display provides a visual output channel, a loudspeaker, an audio output channel, and a
microphone, an audio input channel.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

 – 8 – IEC PAS 62883:2014  IEC 2014

THE UNIVERSAAL FRAMEWORK FOR USER
INTERACTION IN MULTIMEDIA AAL SPACES

1 Scope

This Publicly Available Specification (PAS) specifies a framework for adaptive handling of
explicit interaction among humans and AAL spaces. This is based on a differentiation
between explicit and implicit interaction as a consequence of the paradigm shift from Human-
Computer Interaction to Human-Environment Interaction, further explained in the definition of
the latter term.

As a framework, a main subject matter of the specification is the identification of relevant
areas for further standardization, thereby also looking at the interrelationships among the
identified areas. The PAS also provides a first extensible specification in some of those areas.

The proposed UI framework has been derived from the logical separation of application and
presentation layers as depicted by Figure 2, and encompasses the following elements
(Figure 3):

• Analysis of the relationships between UI handlers and I/O devices without specifying
possible languages, models, or abstract APIs for interaction with these devices, as there
are certain international standardization activities that go in this direction2;

• the language and model for describing application-specific dialogs / user interfaces as part
of UI requests made by applications to the UI framework;

• the adaptation concept and parameters needed to achieve adaptive UI and the way they
affect UI requests; and

• Protocols used by the UI framework to broker between UI handlers and applications as
pluggable components.

Figure 3 – The scope of the specified UI framework marked by the green colour

2 For example [3] on representing user input coming from input devices.

Brokerage

Application

UI RequestUI Response
(forwarded)

UI Request
(forwarded)UI Response

UI Handler

I/O Device

not covered

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

IEC PAS 62883:2014  IEC 2014 – 9 –

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any
amendments) applies.

IEC 62481-2, Digital living network alliance (DLNA) home networked device interoperability
guidelines – Part 2: DLNA media formats

ISO/IEC Guide 71:2001, Guidelines for standards developers to address the needs of older
persons and persons with disabilities

ISO 9241-11:1998, Ergonomic requirements for office work with visual display terminals
(VDTs) – Part 11: Guidance on usability

ISO 9241-110:2006, Ergonomics of human-system interaction - Part 110: Dialogue principles

3 Terms, definitions and abbreviations

For the purposes of this document, the following terms and definitions apply.

3.1 Terms and definitions

3.1.1
ambient assisted living
AAL
products, services, environments and facilities used to support those whose independence,
safety, wellbeing and autonomy are compromised by their physical or mental status

Note 1 to entry: In this PAS, AAL refers to the usage of ICT, including multimedia systems and equipment and
audio / video communication, for creating intelligent living environments that react to the needs of users by
providing relevant assistance.

[SOURCE: ISO/IEC GUIDE 71:2001]

3.1.2
AAL service user
person who interacts with an AAL system or is connected with an AAL system

3.1.3
AAL space
denotes a smart environment that provides AAL services to its users

Figure 4 – The notion of AAL spaces

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

http://www.beuth.de/de/norm/din-iec-62481-2/103894176?SearchID=512756221
https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

 – 10 – IEC PAS 62883:2014  IEC 2014

3.1.4
channel
denotes the bridging passage that smart environments need between the physical world and
the virtual realm (Figure 5). Channels are realized by devices. Depending on the kind of
channel opened, a channel might be called a sensing channel (realized by sensors), an acting
channel (realized by actuators), an input channel (realized by microphones, keyboards, etc.),
or an output channel (realized by displays, loudspeakers, etc.). The latter two types of
channels might be referred to as I/O channels

Figure 5 – The need of smart environments to utilize channels
for bridging between the physical world and the virtual realm

3.1.5
human-environment interaction
interaction in smart environments is generally divided into two major areas: implicit and
explicit interaction

Implicit interaction is mostly about using sensing channels for observation of happenings, with
or without involvement of humans, in order to recognize in the background relevant situations
to which the environment might be able to react in a desired way.

Explicit interaction, on the contrary, is about situations in which a human user seeks the
dialog with the environment or vice versa, for instance when the user instructs that the
brightness of the TV should be increased or when the environment notifies the user that it is
time to take a certain medicine. Explicit interaction takes place by utilizing input and output
channels provided by I/O devices.

3.1.6
I/O device
an abbreviation for input and / or output device. A device that provides an input and / or
output channel for facilitating explicit interaction between a smart environment and its human
users. Input devices, such as a microphone, a keyboard, or a mouse, can capture an
instruction or response that is provided by a human user and represent it in terms of data in
the virtual realm (Figure 6). Upon receive of data within the virtual realm that is intended to be
presented to human users, output devices, such as displays and loudspeakers, can make it
perceivable to the addressed humans

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

IEC PAS 62883:2014  IEC 2014 – 11 –

Figure 6 – The role of devices in realizing bridging channels

3.1.7
multimodal UI handler
denotes UI handlers that perform the interaction by using multiple channels in parallel,
possibly with a hybrid mix supporting different modalities

3.1.8
smart environment
denotes an environment centred on its human users in which a set of embedded networked
artefacts, both hardware (HW) and software (SW), collectively realize the paradigm of
Ambient Intelligence, mainly by providing for context-awareness and personalization, adaptive
reactivity, and anticipatory pro-activity

Figure 7 – The notion of a smart environment

3.1.9
user
person who interacts with the product, service or environment

3.1.10
user interface
all components of an interactive system (software or hardware) that provide information
and/or control functions for the user to accomplish specific tasks with the interactive system

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

 – 12 – IEC PAS 62883:2014  IEC 2014

3.2 Abbreviation
AAL Ambient Assisted Living
API Application programming interface
Cf confer
DLNA Digital Living Network Alliance
e.g. for example
etc. et cetera
GUI Graphical user interface
HCI Human-Computer Interaction
HEI Human-Environment Interaction
HTML Hypertext Markup Language
HW Hardware
ICT Information and communications' technology
i.e. id est, that is to say
I/O channels Input/Output channel
OWL Web Ontology Language
RDF Resource Description Framework
RM Resource Manager
SW Software
UI User Interaction
UI model User Interaction model
UIML User Interface Markup Language
uAAL universAAL
UPNP Universal Plug and Play
W3C World Wide Web Consortium
XForms W3C Standard at http://www.w3.org/TR/xforms/
XML Extensible Markup Language
XPath XML Path Language; W3C Standard at http://www.w3.org/TR/xpath/

4 The Specification of the universAAL UI Framework

4.1 Overview

As depicted in the Introduction to this PAS, the universAAL UI Framework for Multimedia AAL
spaces is based on separating the application layer from the presentation layer by introducing
(1) a new type of software components called UI handlers and (2) a brokerage mechanism
between the application and presentation layers. The goal is to achieve an open system in
which arbitrary applications as well as UI handlers can be plugged in independently from each
other while enabling applications to benefit from support for multimodal interaction both by the
framework itself and by the UI handlers:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

IEC PAS 62883:2014  IEC 2014 – 13 –

Figure 8 – An open system for plugging in applications
and UI handlers independently from each other

4.2 Analysis of the relationships between UI Handlers and I/O Channels

UI handlers are seen responsible for handling requests for interacting with human users. To
do so, they need to utilize the available I/O channels but are not necessarily supposed to take
over the binding and management of those channels. On the other side, the "manager" of a
single input or output channel is usually not able to handle the whole of a UI request sent by
an application because applications often wait for user response in the context of some
information to be presented to the user; as a result. At least one output channel and one input
channel are supposed to be utilized simultaneously by the same UI handler in order to be able
to interpret user input in the context of the output presented to the user.

Therefore, it is important to have a more precise look at the relationship between UI handlers
and I/O channels: Section 3.1 states that channels are realized by certain devices but it does
not say anything about their binding and availability in the virtual realm. In the concept map in
Figure 9, those definitions are extended by introducing the concept of Channel Binding; the
same concept can be used for both input and output channels:

Figure 9 – Channel binding by I/O devices

The device that realizes a channel has to have an integrated solution for providing access to
the channel. This might be very low-level, at hard- and firmware level to exchange certain bits
and bytes through a physical connector interface (called Embedded Binding) or already
software using higher-level protocols and abstractions (called Driver). Drivers might be
provided by third-party and / or run on third-party devices. Like Figure 10 denotes, a driver
might wrap another driver in order to comply with higher-level abstractions (e.g. a “UPNP
driver”) for binding a special-purpose device that is not readily “UPNP-aware” usually uses

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

 – 14 – IEC PAS 62883:2014  IEC 2014

“Embedded Bindings” or “Legacy Drivers” for providing wrappers that interact at the UPNP
level of abstraction.

In particular, the higher-level abstractions might only make sense in the context of a
framework created for certain purposes (cf. a windowing system that uses a mouse driver and
already interprets the mouse events in the context of the bunch of objects in the framework).

Figure 10 – The notion of a driver with the case of a UPNP-aware driver3

Similar to the UPNP-aware driver, a universAAL-aware driver should use the API of the
universAAL middleware in order to provide related data and functionality in the universAAL
realm4 (Figure 11):

Figure 11 – The case of a universAAL aware driver

Like Figure 12 denotes, the development of a UI handler can be based on any of the available
alternatives.

3 A driver that is UPNP-aware, provides data to the UPNP realm by using the UPNP eventing mechanisms and it

renders services in the UPNP realm by using the UPNP control mechanisms.

4 The universAAL middleware provides for sharing data and functionality using the abstraction of virtual
communication buses that broker messages between attached components; there are three buses, each
responsible for a specific class of brokerage cases: the context bus works on a publish-subscribe base and is
responsible for the brokerage of events, the service bus works on a request-response base and brokers
services, and finally the UI bus (subject to discussion in Section 4.5.2) that brokers requests for interaction with
human users to UI handlers. The three buses of the universAAL middleware are quite in analogy to the building
blocks “Eventing”, “Control” and “Presentation” in the common architecture of UPNP. To publish events on the
context bus, a component has to extend an interface called “Context Publisher”, and to provide services on the
service bus, it has to extend “Service Callee”.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

IEC PAS 62883:2014  IEC 2014 – 15 –

Figure 12 – Possible relationship between UI handlers and drivers

An input or output channel can be associated with a certain location (the location of the
device that realizes the channel), a modality, and a privacy level 5 . These are important
characteristics when it comes to context-aware and personalized selection of an appropriate
UI handler, which is supposed to be a crucial task of the UI framework.

There is an analogy between UI handlers and Web browsers ([4]). The specific characteristics
of UI handlers in comparison to Web browsers are:

• UI handlers in AAL spaces might use modern middleware to utilize I/O channels
distributed in an AAL space instead of being limited to only locally available drivers;

• Compared to the Web, the UI framework for AAL spaces might move easier beyond HTML,
which is not really modality- & layout-neutral, and make use of the results of activities, that
target the development of applications beyond the browsing of Web pages.

4.3 Dialog descriptions

The most important part of UI requests is the description of the dialog that an application is
asking to be held with a certain user. Such a description shall be device-, modality- and
layout-independent in order to guarantee a clear separation between application logic, on one
side, and presentation mechanisms used by the UI handlers available in a given AAL space,
on the other side. There are several alternative specifications relevant for dialog descriptions;
this document builds on XForms 1.1. XForms scripts are XML documents basically formed
from two parts:

• a set of form Controls that define the structure of the form as to be presented to the
addressed human user; and

• a set of Model elements that mainly deal with the data involved in the intended interaction
from the viewpoint of the application.

The latter includes the data structures and types relevant for the form data as well as instance
data, such as hidden data or any initial values to be used when rendering the form or hidden
data. Form controls are linked with the XML elements in the model part via XPATH
expressions6. In this way, the interpreter will know if any initial value is associated with a form
control at hand and which restrictions have to be applied to possible related user input.

The application of XForms in the universAAL UI Framework is not one-to-one due to the fact
that the UI framework specified in this document is part of a more complete specification on

5 Privacy-level of a channel denotes its appropriateness for private communication when several people are in

the location where interaction takes place.

6 See http://www.w3.org/TR/xpath/. XPATH expressions can be used to refer to the XML elements and attributes
in an XML document.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

 – 16 – IEC PAS 62883:2014  IEC 2014

application-to-application interoperability within AAL spaces, in which data sharing plays a
substantial role. For this reason, universAAL had to rely on the Semantic Web7 specifications
and used the Resource Description Framework 8 (RDF) as the de facto standard for
representing shared data in a domain-independent way. According to the Semantic Web
specifications, the domain-specific model underlying RDF data (data represented in RDF) can
then be specified using the Web Ontology Language9 (OWL). By relying on the combination of
RDF and OWL, universAAL specifications already cover many of the features assumed for the
model part of XForms. For example, the type system embedded in XForms Model is inherently
supported in a more powerful way in universAAL because of using OWL-based ontologies.
Therefore, the UI Framework of universAAL uses XForms specification just for the purpose of
specifying a dialog package that consists of the equivalents of XForms controls; the data
section of XForms is then replaced by RDF resources or OWL individuals originally used by
universAAL applications.

The dialog package of universAAL embeds both the form controls and the form data in a
single RDF resource of type “Form”, as illustrated by Figure 13.

Figure 13 – The dialog package based on the notion of a form

Characteristics of this package are10:

• The dialog package is only inspired by XForms and does not provide any one-to-one
implementation of the original set of form controls:
– Originally, there is no hierarchical relationship between the form controls in XForms;

the provided class hierarchy is the result of analyzing the nature of those controls.

7 http://www.w3.org/standards/semanticweb/

8 http://www.w3.org/RDF

9 http://www.w3.org/2004/OWL

10 Please refer to API Documentation available under http://depot.universaal.org/ for a complete documentation of
this package. This API documentation exists in terms of Java API docs; the documentation of the dialog
package can be accessed by navigating to the package org.universAAL.middleware.ui.rdf.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

IEC PAS 62883:2014  IEC 2014 – 17 –

– For some form controls in this package such as Sub-dialog Trigger and Media Object,
there is no direct counterpart in the XForms original set of form controls.

• There are four types of dialogs in universAAL like Figure 14 shows:
– System menu: the main menu assumed to be provided by a specific component of the

UI framework, called the Dialog Manager, that provides an entry-level access to the
available AAL services and applications.

– Ordinary / standard dialog: to be used when the application wants to wait for a related
input event upon which the application might decide whether to finish the interaction
with the user or proceed to a next dialog.

– Message: to be used when the application does not expect any input from the user as
long as it can be sure the message will be delivered to the user and acknowledged by
him or her.

– Sub-dialog: to be used for constructing a hierarchy of running dialogs to ensure that
control is returned to the parent dialog whenever a sub-dialog is finished.

Main group
of I/O controls

Standard buttons

Main group
of I/O controls

S
u
b
m
i
t
s

Main group
of I/O controls

S
u
b
m
i
t
s

Main group
of I/O controls

S
u
b
m
i
t
s

Standard buttons

Standard Dialog

System Menu Message

Subdialog

Figure 14 – A possible graphical visualization of
the mapping between dialog types and the predefined standard groups

• Depending on the dialog type, a form in universAAL will consist of different combinations
of the following predefined groups:
– submits: “buttons” that finish the dialog intended by the current form should be added

to this group;
– ioControls: all other form controls, no matter if input or output controls, subgroups or

even submits that trigger a sub-dialog should be added to this group;
– stdButtons: this group is reserved for a dialog management solution that has access to

all dialogs and may be willing to add standard buttons beyond the application logic to
reflect a system-wide behaviour.

The reference implementation of the universAAL dialog package incorporates additionally the
following features:

• The data part of the forms is hidden to the UI handlers so that they are relieved from error-
checking when users provide input: UI handlers simply try to store user input provided in
the context of a certain form control to that control element; if this attempt fails, the UI
handler shall give some hint to the user using the alert message set by the application
with the same semantic as defined by XForms.

• When a UI handler finishes a dialog, the data section of the form is automatically added to
the response to be provided to the UI broker.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

 – 18 – IEC PAS 62883:2014  IEC 2014

• Form controls can be generated by the dialog package automatically based on ontological
knowledge associated with the data.

4.4 The Adaptation Concept

4.4.1 Overview

The separation of the application and presentation layers based on introducing a brokerage
mechanism in-between makes it possible to provide an efficient and effective approach to the
accessibility and adaptivity challenges in the AAL domain. This approach is based on the
division of the adaptation tasks between the three parties in a natural way:

• Applications may concentrate on adaptivity in control and in content composition, for
example by sorting the application data to be presented to a user in a personalized and
situation-ware way;

• UI handlers may concentrate on adaptation in rendering by taking the characteristics of
the used channels into account; and

• The brokerage mechanism residing in-between may concentrate on the selection of the
right UI handler for a given user in a given situation.

All the three layers can benefit from the universAAL framework for supporting adaptivity, both
in terms of context-awareness and personalization, by subscribing for relevant contextual data
and / or fetching such data. Figure 15 provides an overview of the corresponding set of
components that comprise the universAAL framework for supporting adaptivity as an
extension to the universAAL bus system (see footnote 4). Further discussion of this part of the
universAAL platform is not in the scope of this specification.

Figure 15 – The universAAL framework for supporting adaptivity, which builds on top of
the universAAL context and service buses (see footnote 4)

4.4.2 Responsibilities of Applications

Applications can prepare the content to be presented to the user in an adaptive way before
adding it to a form object. Behaviour related to preparing the content in a personalized and
situation-aware way is a choice that shall be made by the application developer and the UI
framework cannot influence this behaviour largely. Here, the expectation is that the platform
as a whole provides means for supporting adaptivity, quite similar to the universAAL
framework outlined in Figure 15.

Applications shall contribute to the adaptivity of the UI framework as a whole. To enforce this,
the framework requires that applications provide the following data items when making a UI
request:

• Addressed User: the specific user whom the application wants to reach.

• The dialog priority: one of none, low, middle, high, or full; it will be ignored if at the time of
receiving the UI Request no other dialog is running that involved the same user as the one
addressed; otherwise, it will be used to determine whether the running dialog should be
interrupted; if the running dialog shouldn’t be interrupted, the request will be put in a
queue sorted according to the dialog priority and time of arrival.

• The content language: a value of type language [6] as defined in the specification of XML
Schema.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

IEC PAS 62883:2014  IEC 2014 – 19 –

• The privacy level of the content: one of insensible, known_people_only, intimates_only,
home_mates_only, or personal.

Applications shall also contribute to the rendering phase by providing alternative versions of
any media objects used as content in the intended dialog. For this purpose, they shall rely on
a specific component of the universAAL UI framework, known as the Resource Manager (see
the specification of the RM in Section 4.5.4), by:

• referring in a generic way to a class of alternative media in dialog descriptions instead of
referring to concrete resources; and

• providing the RM with several different versions of the media objects along with specific
metadata, each for a specific runtime context.

4.4.3 Responsibilities of UI handlers

As components that utilize certain output channels for holding dialogs with human users, UI
handlers shall adapt the modality- and layout-neutral description of dialogs to the capabilities
of the devices that realize the utilized output channels. For performing such adaptation these
rules shall be followed:

• The profiles of the devices that realize the output channels may be stored in the database
of shared facts as indicated in Figure 15 (see in the same Figure also the component
called Profiling); alternatively, the developer of a UI handler may rely on the API of the
device driver used.

• The adaptation to the channel capabilities will necessitate transformations (e.g., text to
speech) and layout-related decisions (e.g., the order of going through the dialog elements
if a “one-dimensional” device such as a loudspeaker is being used for rendering the
dialog). This specification makes no assumptions about the relationship of UI handlers to
possible related transformation and rendering tools. From the perspective of the whole
universAAL platform, it is recommended to decouple such auxiliary software and utilize
their capabilities as shared services over the universAAL service bus (see footnote 4).

• The adaptation of media objects to the capabilities of the used devices needs the help of
application developers or third parties. If the application developer does contribute and the
dialog description contains references to the Resource Manager (see the recommendation
to application developers in the previous section), the mandated UI handler will have to
retrieve a best-match version of the referenced media object from the Resource Manager
by providing appropriate parameters about the runtime context.

Similar to the case of applications, UI handlers shall contribute to the adaptivity of the UI
framework as a whole. To enforce this, the framework requires that UI handlers shall provide
their profiles to the brokerage layer when registering to that layer. The profile of a UI handler
shall include the following information items:

• Supported channels: each channel shall be described by the following properties, which
can be extracted from the profile of the device that realizes the channel and is utilized by
the UI handler:
– Channel type: input or output;
– Location where the channel is available: will depend on the location of the

corresponding device;
– Interaction modality supported through the channel: currently, one of GUI, Speech, or

Gesture;
– Channel privacy level: private, public, or both; e.g., a headphone provides a private

channel;
– but the loudspeaker of a TV, a public channel, and the speaker of a phone provides

both;
– Modality-specific tuning capabilities: e.g., the volume range.

• Supported languages: a list of values of type language [6] as defined in the specification
of XML Schema.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

 – 20 – IEC PAS 62883:2014  IEC 2014

• Appropriateness for certain impairments: UI handlers might be specialists in interaction
with certain types of users having certain types of impairments:

Figure 16 – A model for describing access impairments

4.4.4 Responsibilities on the brokerage layer

AAL spaces are open spaces; applications and UI handlers are “third-party” components that
can be plugged into AAL spaces as desired by the users. The extent of adaptivity in the
behaviour of these components is a function of the design decisions made by their developers.
The level of adaptivity in these components will play a decisive role in determining their
market shares.

In terms of the whole system, AAL spaces can still achieve a certain level of adaptivity even
independently from the adaptivity level supported by the concrete set of applications and UI
handlers running in the space. The prerequisite for this is the contribution of applications and
UI handlers to a limited extent (4.4.2 and 4.4.3). Given this contribution, the following
behaviour can be realized that is assumed to be essential for AAL spaces of future:

• enable natural interaction with exciting user experience by selecting a UI handler, which
utilizes those I/O channels that are the best match for interaction with a certain user in a
given situation;

• during the time a certain dialog is being held with the addressed user, instruct the UI
handler to adapt itself to the changes in the context as far as the capabilities of the UI
handler allow to cope with the changes; otherwise, transfer the remaining part of the
dialog from that UI handler to a new one that is a better match for the changes in the user
context. Examples for the effects that can be achieved are:
a) adapt within the scope of modality-specific tuning capabilities of the used channels,

e.g., perform a speech-based interaction a little bit louder because the situation with
the background noise worsens;

b) switch to another channel due to the change of the user location and achieve “follow
me”;

c) switch to another channel with a different privacy level, e.g., when the personal
content in the dialog should not be disclosed to someone that enters the same location
as the interacting user;

d) suspend the current dialog and start with another dialog with a higher priority;
e) continue with a previously suspended dialog because the interrupting dialog finished or

because the user instructs to do so;
f) stop all interactions with the user because something else is attracting the user’s

attention.

For realizing the adaptation effects d) to f), there is need for a sort of dialog management,
which is subject of discussion in Section 4.5.3. For selecting the most appropriate UI handler

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

IEC PAS 62883:2014  IEC 2014 – 21 –

and realizing the effects a) to c), the brokerage layer shall match the current state of a set of
relevant parameters against the profile of the available UI handlers, each time that a UI
request is received from the application layer. The corresponding set of parameters can be
determined in the following way:

• use the content language indicated by the application for comparing it against the set of
languages supported by the UI handlers available in the current AAL space;

• fetch from the user’s context11: any impairments that the user addressed in the UI request
might have and compare it against the appropriateness for access impairments claimed by
the available UI handlers;

• fetch from the user’s context: the current location of the user addressed in the UI request
and use it for matching against the location of the output channels utilized by a given UI
handler;

• fetch from the user’s context: the modality recommended in the current situation for the
user addressed in the UI request and match it against the modalities supported by the
output channels utilized by a given UI handler 12;

• for the modality recommended, fetch from the user’s context: the modality-specific tuning
parameters preferred by the user addressed in the UI request and use it for matching
against the modality-specific tuning capabilities of the channels to use;

• fetch from the user’s context: the currently highest privacy level that a dialog is allowed to
possess in order to still be held using public channels and compare it with the privacy
level provided by the application in order to determine the privacy level required from the
output channel to use 13.

Figure 17 – Summary of the adaptation parameters

NOTE When realizing the matchmaking procedure, the brokerage layer should fetch in a first operation all of the
parameters, then go through all of the profiles registered by the available UI handlers and match the fetched
parameters against those profiles, while ranking them. In the end of this process, the UI handler whose profile
ranked the best will be selected. See also the matchmaking rules in Section 4.5.2.

11 Assumes that the user model includes the corresponding information. In universAAL this model exists in terms

of an ontology, and all info describing user context is assumed to be available in the “facts database”, which is
part of the universAAL framework for supporting adaptivity; see also footnote 15.

12 In universAAL, a rule determines this value. One of the general-purpose reasoners in the universAAL
framework for supporting adaptivity (more specifically, the so-called Situation Reasoner that works based on
SPARQL) monitors the changes in the context, and based on those changes, re-evaluates the affected rules.
The evaluation of these rules might lead to the construction of a new fact that is then fed into the “fact
database”. This always-running background process ensures that a simple fetch operation is enough for, say,
retrieving the most up-to-date recommendation for the modality to use in the interaction with a given user.

13 In universAAL, a rule determines this value as in case of the recommended modality.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

 – 22 – IEC PAS 62883:2014  IEC 2014

4.5 Provisions of the UI Framework

4.5.1 Introduction

There are three components as integral parts of the universAAL UI framework:

a) The UI Bus, which provides a message brokerage mechanism that facilitates the
independence of the applications and UI handlers from each other.

b) The Dialog Manager, which assists the UI Bus in the management of dialogs in order to
achieve some of the desired adaptation effects listed as examples in Section 4.4.4.

c) The Resource Manager already mentioned in Sections 4.4.2 and 4.4.3.

Figure 18 – The components comprising the universAAL UI framework

4.5.2 The UI Bus and its brokerage protocols

In general, messaging brokers can be abstracted as virtual communication buses, or short
buses. This is also the abstraction used by the universAAL platform; therefore, the broker in
the universAAL UI framework is called the UI Bus, which is mandated to facilitate the
interaction between applications and UI handlers.

A bus may be realized in a centralized way so that only one single instance of the bus exists
in a whole system; if the UI Bus is realized in that way, there would be a 1:1 relationship
between the term UI Bus and the singleton object that realizes the bus. Alternatively, a bus
can be realized in a distributed way with one instance per runtime environment so that
components that want to connect to the bus can do so by accessing the local instance of the
bus and use its API natively. In that case, the different instances of the same bus running in a
distributed way within different runtime environments shall find each other and cooperate in a
way that the distribution and possible heterogeneity of the different runtime environments can
be overcome. If so, a message posted by a component to the bus instance that exists in the
same runtime environment may reach another component running in another runtime
environment, when necessary. Through such cooperation between the different instances of
the same bus, each instance will be perceived as the footprint of a single global bus by the
components locally attached to that instance. If the UI Bus is realized in this way, then the
term UI Bus would refer to the logically global bus that emerges through the cooperation
between the different instances of the bus distributed among different runtime environments14.

Buses can operate either event-based or call-based. Event-based buses support the
communication pattern known as publish-subscribe, whereas call-based buses realize the
request-response communication pattern. The UI Bus in the universAAL UI framework
operates call-based and consequently supports the request-response communication pattern.
As a result, the main messages posted to the UI Bus or forwarded by the UI Bus to its
members are called UI Request and UI Response, respectively.

14 The reference implementation of the UI Bus in the universAAL platform is based on the second paradigm as
part of a distributed middleware approach that consists of two other buses, namely the context and service
buses, as indicated in footnote 4.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

IEC PAS 62883:2014  IEC 2014 – 23 –

Figure 19 – The main messages exchanged on the UI Bus

From the viewpoint of an application, a UI Request consists of a form object as described in
Section 4.3. and the set of parameters described in Section 4.4.2. The resulting object model
can be summarized as follows:

Figure 20 – The notion of a UI request as constructed by applications

When an application posts a UI Request to the UI Bus, the latter asks the Dialog Manager to
(1) make a decision about handling the request in the current situation (4.5.3), and – if
appropriate to be handled immediately – (2) augment the request with up-to-date information
from the user context according to the logic described in Section 4.4.4. As a result, the UI
Request will be enriched by a set of parameters, such as user’s possible access impairment,
recommended presentation modality for the addressed user in her/his current situation,
alternative presentation modality recommendation, presentation location (where the user finds
himself currently), presentation privacy, and modality-specific user preferences. The enriched
UI Request is then matched against the profiles of registered UI handlers (see the
enumeration in Section 4.4.3 for the content of these profiles) in order to choose the most
appropriate UI handler.

The following rules are used during matchmaking in order to assign scores to the candidate UI
handlers before choosing the one with the highest score:

• Omit candidates not able to present a dialog in the required presentation location.

• If the usage of private channels is required by the enriched UI Request, omit candidates
not offering this capability.

• If the last UI handler that was interacting with the user is among the remaining candidates,
take that one as the best match.

• If accessibility support is mandatory, omit candidates not appropriate; otherwise assign
higher scores to candidates offering appropriate accessibility support.

• Omit candidates that support neither the recommended presentation modality nor the
alternative modality; then, assign higher scores to candidates that support the
recommended presentation modality rather than supporting the alternative one.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

 – 24 – IEC PAS 62883:2014  IEC 2014

• Assign higher scores to candidates that provide a better match for the modality-specific
user preferences.

• At any time after omitting not appropriate UI handlers from the list of candidates, if the list
of remaining candidates becomes empty, then try to find a compromise for the conflicting
situation; e.g., if the enriched UI Request indicates that only private channels shall be
used but no UI handler offers this capability in user’s location, then the user shall be
asked if she/he would change to a location with available private channels, or the
information should be presented in the same location using public channels, or the
interaction is postponed to a later time. By default – e.g., when there is no way to ask the
user for resolving the conflicting situation – the UI Bus will ask the Dialog Manager to
preserve the dialog for a later time.

Application UI Bus Dialog Manager UI Handler

Check Request

priority check

enrichmenttrue + enriched request

match making

user interaction

UI Response

UI Request

enriched UI Request

UI Response

Figure 21 – Overview of the sequence of actions when the priority check is positive

If any of the above parameters from the enriched UI Request changes during the time after
mandating a UI handler to perform the corresponding dialog with the user and before the UI
handler reports that the dialog has been finished, the Dialog Manager resends the enriched UI
Request with its updates to the UI Bus and requests to redo the matchmaking. Examples of
such changes are:

• If during interaction with a UI handler the user changes the location from one room to
another, the Dialog Manager will have to update the presentation location in the enriched
UI Request.

• If during interaction with a UI handler a third person who is in conflict with the privacy level
of the presented content, enters the presentation location, the Dialog Manager will have to
update the required channel privacy.

• If, according to some user preference, the loudness of the speakers used for interacting
with the user should change depending on the loudness of the background noise, and
during speech-based interaction with a UI handler, the background noise changes
significantly, the Dialog Manager will have to update the modality-specific parameter
“volume”.

After receiving the updated UI Request, the UI Bus will redo the matchmaking with the profiles
of available UI handlers; if as result the newly matched UI handler is the same as the UI
handler matched previously, this UI handler will be notified about the change of the enriched
UI Request in order to adapt its behaviour to the changes, e.g. by transferring the rest of the
interaction to more appropriate channels accessible to it (channels in the new location of the
user or private channels in the same location) or by adapting the modality-specific rendering

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

IEC PAS 62883:2014  IEC 2014 – 25 –

parameters (e.g., speech output becomes louder). If, however, the new UI handler is different
from the old one, the old UI handler will be asked to cut the dialog and return the form data
with all intermediate user input gathered so far, then the enriched UI Request updated by the
Dialog Manager will be re-updated by the UI Bus in order to include the changes in the form
data, and finally the new UI handler will be mandated to handle the dialog with the user.

UI Bus Dialog Manager UI Handler 1

match making

user interaction

enriched UI Request

UI Handler 2

Context changed

Cut Dialog

The latest status of form data

update UI Request

updated UI Request

user interactionUI Response

Figure 22 – The case of switching to a new UI handler
when handling changes in the context

Beside this main protocol for forwarding UI Requests from applications to UI handlers, the UI
Bus supports the following additional protocols:

1) Finishing a dialog

When a UI handler finishes a dialog with the user, it constructs a UI Response by providing
the following set of data and hands it over to the UI Bus:

• The user who provided the response.

• The location where the input was provided.

• The ID of the dialog finished.

• The final state of the form data as updated during the dialog with the user.

• The ID of the parent dialog, if the finished dialog was a sub-dialog of another dialog
running previously (see the discussion of sub-dialogs further below).

• The ID of the “Submit” object that caused the dialog to finish (4.3).

• A Flag indicating if the above “Submit” object actually does not finish the dialog but simply
suspends it as a result of activating either a “SubdialogTrigger” (see both the description
of the dialog package in Section 4.2 and the discussion of sub-dialogs further below) or a
“standard button” (see both the description of the dialog package in Section 4.3 and the
discussion of the standard buttons in Section 4.5.3)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

 – 26 – IEC PAS 62883:2014  IEC 2014

Figure 23- The notion of a UI response as constructed by UI handlers

Upon receiving a UI Response, the UI Bus forwards it to the application that had made the
original UI Request and notifies the Dialog Manager that a dialog with a certain ID has
finished or been suspended. See section 4.5.3 for the reaction of the Dialog Manager to this
notification.

2) Aborting a dialog

There are three ways for aborting a dialog: (1) the user may decide to abort a running dialog
using “Submit” objects provided by the application itself; in that case, the abort action actually
falls into the normal category of “finishing a dialog” as discussed in the previous bullet; (2) the
user may decide to abort a suspended dialog using a standard dialog designed by the Dialog
Manager (4.5.3); in that case, the Dialog Manager will ask the UI Bus to inform the
corresponding application about this action of the user; (3) the application itself decides to
cancel its UI Request (e.g., because a deadline for the expected user input was missed); in
that case, the application shall also provide a human readable explanation for this action and
wait until the UI Bus either confirms the abort or informs that the dialog has finished normally.

Upon receiving such an abort request, the UI Bus checks if the corresponding dialog is
running; if yes, the request to abort will be forwarded to the UI handler in charge of handling
the dialog. The UI handler is expected to communicate this situation with the user while
referring to the reasons provided by the application. The result of the user decision will then
be communicated both to the application and to the Dialog Manager. If, however, the
application is asking to abort a dialog that had been suspended for whatever reason and
hence is not running, then only the Dialog Manager is informed by the UI Bus to remove the
dialog from its list of suspended dialogs and not reschedule it for later resumption.

3) Resumption of a previously suspended dialog

A dialog can be suspended due to four reasons (in that case, the Dialog Manager will put the
dialog in a user-specific queue of dialogs waiting for resumption): (1) at the time when the
application made its UI Request, the addressed user was already involved in another running
dialog with the same or higher priority; (2) a running dialog might be suspended because a
dialog with a higher priority has to be pushed into the foreground; in that case, the UI handler
in charge of the running dialog will be asked to cut the dialog and return the form data with all
intermediate user input gathered so far in order to forward it to the Dialog Manager for
suspension; (3) when the user activates a “SubdialogTrigger” in a running dialog, the latter
will be suspended; (4) when a user activates a “standard button” in order to switch to a
standard dialog provided by the Dialog Manager; such standard buttons are added to
application dialogs by the Dialog Manager during the enrichment of UI Requests; activation of
these buttons leads to the suspension of the running dialog.

Resumption of a previously suspended dialog may occur automatically after a dialog with no
parent dialog finishes. In that case, the notification sent by the UI Bus to the Dialog Manager
causes that the latter checks the user-specific queue of dialogs waiting for resumption and
picks the dialog with the highest priority for resumption; in case that there are several dialogs

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

IEC PAS 62883:2014  IEC 2014 – 27 –

with this priority, the oldest one from among them will be selected. If the queue is empty, then
the default standard dialog (the system “main menu”) will be selected. At this time, the
selected dialog (UI Request) will be updated with data from the user context and the UI Bus
will be asked to start with a new matchmaking process for mandating an appropriate UI
handler to resume with that UI Request.

However, if the finished dialog was a sub-dialog, the Dialog Manager won’t execute the above
procedure for resumption; rather, the system expects that the application that had made the
corresponding UI Request will process the input data provided by the user and incorporates
any resulted changes in the data associated with the parent dialog and ask the UI Bus to
resume with the parent dialog. At this stage, the UI Bus restarts the whole process with the
enrichment of the UI Request by the Dialog Manager with up-to-date data from user context,
matchmaking, and mandating the most appropriate UI handler (usually the same UI handler
that just finished the sub-dialog).

The need to resume a suspended dialog may also arise when in the context of a standard
dialog provided by the Dialog Manager, the user explicitly chooses a waiting dialog for
resumption. Such an action finishes the corresponding standard dialog so that the Dialog
Manager will then resume exactly the dialog chosen by the user instead of following its own
logic for the priority-based selection of the next dialog.

4) Handling sub-dialogs

Sub-dialogs are usually used for structuring complex dialogs in a neater way. In the usual
case of GUI-based interaction, a sub-dialog is usually rendered in a pop-up window when
some action of the user activates the sub-dialog. Then, usually the user cannot return to the
parent dialog before the sub-dialog is finished. A reason for this behaviour is that the user
input in the context of the sub-dialog may affect the form data in the parent dialog so that the
parent dialog may need to be re-rendered. A typical example for such a situation is given,
when the parent dialog includes only a summary of more complex data related to the current
dialog and hence has to embed a “SubdialogTrigger” (as it is called in the dialog package of
the universAAL UI framework described in Section 4.3) in the current form in order to provide
the user with the possibility to view all the related details; any changes to these details can
usually be made to the detail data only in the context of such sub-dialogs.

When in the context of a running dialog the user activates a “SubdialogTrigger”, the UI
handler shall construct a UI Response as if the current dialog has finished, and set in this
response a flag indicating that the submission has been caused by a SubdialogTrigger. The
standard “submission ID” in the response will then be the ID of the concrete
“SubdialogTrigger”. Then, the UI handler should assume that most probably it will be
mandated by the UI Bus to perform the sub-dialog that the application is assumed to send in
immediate reaction to such UI Response. Therefore, it should use some interaction “trick”
until the situation is clarified. When the application submits a UI Request that is in reaction to
such a UI Response for activating a sub-dialog, it has to include the ID of the parent dialog in
the corresponding UI Request.

When a sub-dialog finishes, the UI handler shall construct a UI Response in which the ID of
the parent dialog is returned back to the application so that the latter can uniquely identify
which original dialog is expected to be resumed.

Figure 24 to Figure 26 summarize the above discussion in terms of APIs.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

 – 28 – IEC PAS 62883:2014  IEC 2014

Figure 24 – The abstract class to be extended by applications
that want to send UI requests to the UI bus

Figure 25 – The abstract class to be extended by UI handlers
that accept UI requests forwarded by the UI bus for rendering

Figure 26 – The interface of the UI Bus

4.5.3 The dialog manager and its role in assisting the UI Bus

The Dialog Manager (DM) plays multiple roles in the universAAL UI framework for AAL spaces.
It (1) represents the whole system by providing different flavours of system menus and
standard dialogs, (2) assists the UI Bus by being responsible for the incorporation of user
context in analyzing the interaction situations, (3) assists the UI Bus also by providing a

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

IEC PAS 62883:2014  IEC 2014 – 29 –

persistent mechanism for user-specific dialog management, (4) handles user instructions to
the AAL space as a whole, (5) provides a mechanism for users to edit their UI related
preferences as a specific standard dialog, and (6) is finally responsible for offering a unified
view of all user services available in the AAL space as an alternative to system menus and a
method to search for specific services. Due to its roles (1), (4), (5), and (6), it is logically also
playing the role of an application that creates own UI Requests and sends them to the UI Bus
for being brokered to an appropriate UI handler.

Many of the above features of the Dialog Manager have been already specified in the context
of previous sections in this document. Therefore, this section only provides complementary
information needed to specify the tasks of the Dialog Manager in more details:

1) Dialog Management

The DM manages parallel dialogs for several users based on priority queues of published
dialogs and takes care that only one dialog is presented to the user at each point in time
based on the priority of the UI requests received from the application layer. Before brokering
UI requests to UI handlers, the UI Bus asks the DM to check if the UI request should be
handled immediately or wait until a later time; if the result of this check is negative, the
corresponding UI request will be queued and the UI framework does not undertake any
additional action. Only if the result of the check is positive, the enrichment of the UI request
with relevant up-to-date data from the user’s context will be done immediately; otherwise, this
step will be done at the time of resumption (see also the previous section).

One of the important aspects of the enrichment is the addition of “standard buttons” to the
form object contained in UI requests. They make it possible for the user to view and
manipulate the queue of waiting UI requests or switch to the “system main menu” (more on
that further below). An important remark about the “system main menu” is that it is the first
dialog presented to users as soon as they take the initiative to start interacting with an AAL
space by accessing a desired UI handler. In such cases, the UI handler will inform the UI Bus
that, in the absence of any history for a specific user, she/he has started actively to use it for
interacting with the AAL space. The reaction of the UI Bus will be to ask the DM for the
default dialog, which is the “system main menu” as assumed by the DM.

In addition to the user-specific queue of waiting dialogs, the DM remembers the currently
running dialog for each user separately. This way, it can handle all the cases of completion,
aborting, suspending and resuming dialogs correctly and in accordance to the protocols
described in the previous section.

2) Standard Dialogs

Recurring system-wide and application-independent dialogs and dialogs related to the act of
managing dialogs are called standard dialogs in the terminology of the universAAL UI
framework for AAL spaces. The “standard buttons” – referred to previously several times – are
expected to provide access to these kinds of dialogs.

Currently, the following are the only system-wide dialogs specified in this framework:

• The “system main menu” that provides for navigation through a specific organization of
user services available in the AAL space based on user- and language-specific
configuration files.

• A dialog for searching among all the user services available in the AAL space that can be
accessed by a specific user in a free form, beyond the “system main menu”, which is a
pre-configured organization of them that might not be comprehensive enough.
Searching for services usually occurs in the context of a need; hence, such a free search
might be used for directly articulating a need, such as “turn on the light on the wall behind
me!” This kind of “search” can actually be classified as an instruction to the AAL space,
which is usually equivalent to a shortcut to some available service that otherwise would be
found by navigating in menus. As a result, the DM is also in charge of resolving such
instructions as far as possible.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

 – 30 – IEC PAS 62883:2014  IEC 2014

• A dialog for viewing and manipulating UI-specific user preferences

In addition, currently supported dialogs related to the second category of standard dialogs,
namely the act of managing dialogs, include two similar but separated dialogs for browsing,
resumption or aborting UI requests that are waiting in the user-specific queue: One of them is
specific to pending “messages” and the second one for all the other pending dialogs (see the
list of dialog types in Section 4.3).

4.5.4 The Resource Manager

The Resource Manager (RM) is mainly responsible for managing application-specific media
objects as resources to be used by UI Handlers when rendering UI requests. Applications may
refer to such resources in their UI requests by using URIs; this “presentation URI” is mapped
by the RM to alternative concrete URIs that can be accessed directly by the UI Handler. Both
application vendors and third parties can then provide the RM with several different versions
of the media objects, each for a specific runtime context. The RM stores the resources
together with their URIs and relevant metadata persistently.

Figure 27 – Access to the resources managed by the RM

Application developers are expected to use the RM the following way:

a) In UI Requests, refer to media objects by a “presentation URI”.
b) For each “presentation URI”, provide a set of alternative concrete resources, each of

which to be described by the following set of metadata:
– Mime type and related parameters (e.g., for images: resolution, colour, etc.).
– Locale and related parameters.
– Possibly a set of keywords.
– The initial set of media objects and their metadata should be part of the application

package; the application should forward them to the resource manager as soon as it
starts to run. The administrator of the RM may extend the set of alternatives.

UI Handlers are expected to use the RM in the following way:

a) Ask the resource manager for substituting all “presentation URIs” found in the UI request
at hand with the URIs of concrete resources by sending to the RM the UI request and a
set of parameters describing the rendering context, such as the currently used modality
and language, as well as preferences with regard to resource metadata using value
restrictions (e.g., “if set” / “one of” / “in range”) and / or white, black or wish lists (wanted /
unwanted / wished). In response, the RM will return the transformed UI request, in which
all presentation URIs have been substituted from the URIs of concrete resources that are
best matches for the given rendering context and value restrictions.

b) When rendering the transformed UI request from the previous step, the actual resources
may be retrieved from the RM using the concrete URI found in the adapted UI request.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C PAS 62

88
3:2

01
4

https://iecnorm.com/api/?name=b46f8a3ea5741d432c4c8f9a6051e6d1

	CONTENTS
	FOREWORD
	INTRODUCTION
	1 Scope
	2 Normative references
	3 Terms, definitions and abbreviations
	3.1 Terms and definitions
	3.2 Abbreviation

	4 The Specification of the universAAL UI Framework
	4.1 Overview
	4.2 Analysis of the relationships between UI Handlers and I/O Channels
	4.3 Dialog descriptions
	4.4 The Adaptation Concept
	4.4.1 Overview
	4.4.2 Responsibilities of Applications
	4.4.3 Responsibilities of UI handlers
	4.4.4 Responsibilities on the brokerage layer

	4.5 Provisions of the UI Framework
	4.5.1 Introduction
	4.5.2 The UI Bus and its brokerage protocols
	4.5.3 The dialog manager and its role in assisting the UI Bus
	4.5.4 The Resource Manager

	Annex A (informative) Use cases
	A.1 Use Case: Supporting rich human computer interaction
	A.2 Use Case: Healthy Lifestyle Service Package Use Case (universAAL)

	Annex B (informative) An Overview of the universAAL Project
	Bibliography
	Figures
	Figure 1 – Paradigm shift from HCI to HEI
	Figure 2 – logical separation of application and presentation layers
	Figure 3 – The scope of the specified UI framework marked by the green colour
	Figure 4 – The notion of AAL spaces
	Figure 5 – The need of smart environments to utilize channelsfor bridging between the physical world and the virtual realm
	Figure 7 – The notion of a smart environment
	Figure 8 – An open system for plugging in applicationsand UI handlers independently from each other
	Figure 9 – Channel binding by I/O devices
	Figure 10 – The notion of a driver with the case of a UPNP-aware driver
	Figure 11 – The case of a universAAL aware driver
	Figure 12 – Possible relationship between UI handlers and drivers
	Figure 13 – The dialog package based on the notion of a form
	Figure 14 – A possible graphical visualization of the mapping between dialog types and the predefined standard groups
	Figure 15 – The universAAL framework for supporting adaptivity, which builds on top of the universAAL context and service buses (see footnote 4)
	Figure 16 – A model for describing access impairments
	Figure 17 – Summary of the adaptation parameters
	Figure 18 – The components comprising the universAAL UI framework
	Figure 19 – The main messages exchanged on the UI Bus
	Figure 20 – The notion of a UI request as constructed by applications
	Figure 21 – Overview of the sequence of actions when the priority check is positive
	Figure 22 – The case of switching to a new UI handlerwhen handling changes in the context
	Figure 24 – The abstract class to be extended by applicationsthat want to send UI requests to the UI bus
	Figure 25 – The abstract class to be extended by UI handlersthat accept UI requests forwarded by the UI bus for rendering
	Figure 26 – The interface of the UI Bus
	Figure 27 – Access to the resources managed by the RM
	Figure B.1 – Project ID Card
	Figure B.2 – The three pillars of the universAAL platform

