

IEC 61158-6-17
Edition 1.0 2007-12

INTERNATIONAL
STANDARD
NORME
INTERNATIONALE

Industrial communication networks – Fieldbus specifications –
Part 6-17: Application layer protocol specification – Type 17 elements

Réseaux de communication industriels – Spécifications des bus de terrain –
Partie 6-17: Spécification de protocole de la couche d’application – Éléments
de Type 17

IE
C

 6
11

58
-6

-1
7:

20
07

®

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 THIS PUBLICATION IS COPYRIGHT PROTECTED
 Copyright © 2007 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester.
If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication,
please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni
utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les
microfilms, sans l'accord écrit de la CEI ou du Comité national de la CEI du pays du demandeur.
Si vous avez des questions sur le copyright de la CEI ou si vous désirez obtenir des droits supplémentaires sur cette
publication, utilisez les coordonnées ci-après ou contactez le Comité national de la CEI de votre pays de résidence.

IEC Central Office Tel.: +41 22 919 02 11
3, rue de Varembé Fax: +41 22 919 03 00
CH-1211 Geneva 20 info@iec.ch
Switzerland www.iec.ch

About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.

Useful links:

IEC publications search - www.iec.ch/searchpub
The advanced search enables you to find IEC publications
by a variety of criteria (reference number, text, technical
committee,…).
It also gives information on projects, replaced and
withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published
details all new publications released. Available on-line and
also once a month by email.

Electropedia - www.electropedia.org
The world's leading online dictionary of electronic and
electrical terms containing more than 30 000 terms and
definitions in English and French, with equivalent terms in
additional languages. Also known as the International
Electrotechnical Vocabulary (IEV) on-line.

Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication
or need further assistance, please contact the
Customer Service Centre: csc@iec.ch.

A propos de la CEI
La Commission Electrotechnique Internationale (CEI) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications CEI
Le contenu technique des publications de la CEI est constamment revu. Veuillez vous assurer que vous possédez
l’édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Liens utiles:

Recherche de publications CEI - www.iec.ch/searchpub
La recherche avancée vous permet de trouver des
publications CEI en utilisant différents critères (numéro de
référence, texte, comité d’études,…).
Elle donne aussi des informations sur les projets et les
publications remplacées ou retirées.

Just Published CEI - webstore.iec.ch/justpublished
Restez informé sur les nouvelles publications de la CEI.
Just Published détaille les nouvelles publications parues.
Disponible en ligne et aussi une fois par mois par email.

Electropedia - www.electropedia.org
Le premier dictionnaire en ligne au monde de termes
électroniques et électriques. Il contient plus de 30 000
termes et définitions en anglais et en français, ainsi que
les termes équivalents dans les langues additionnelles.
Egalement appelé Vocabulaire Electrotechnique
International (VEI) en ligne.

Service Clients - webstore.iec.ch/csc
Si vous désirez nous donner des commentaires sur
cette publication ou si vous avez des questions
contactez-nous: csc@iec.ch.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

mailto:info@iec.ch
http://www.iec.ch/
http://www.iec.ch/searchpub
http://webstore.iec.ch/justpublished
http://www.electropedia.org/
http://webstore.iec.ch/csc
mailto:csc@iec.ch
http://webstore.iec.ch/justpublished
https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

IEC 61158-6-17
Edition 1.0 2007-12

INTERNATIONAL
STANDARD
NORME
INTERNATIONALE

Industrial communication networks – Fieldbus specifications –
Part 6-17: Application layer protocol specification – Type 17 elements

Réseaux de communication industriels – Spécifications des bus de terrain –
Partie 6-17: Spécification de protocole de la couche d’application – Éléments
de Type 17

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE XB
ICS 25.040.40; 35.100.70

PRICE CODE
CODE PRIX

ISBN 978-2-8322-1025-3

® Registered trademark of the International Electrotechnical Commission
 Marque déposée de la Commission Electrotechnique Internationale

®

 Warning! Make sure that you obtained this publication from an authorized distributor.
 Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 2 – 61158-6-17 © IEC:2007

CONTENTS

FOREWORD ... 5
INTRODUCTION ... 7
1 Scope ... 8

1.1 General ... 8
1.2 Specifications .. 8
1.3 Conformance ... 8

2 Normative reference ... 9
3 Definitions .. 9

3.1 Terms and definitions .. 9
3.2 Abbreviations and symbols .. 15
3.3 Conventions .. 16

4 Abstract syntax description ... 18
4.1 FAL PDU abstract syntax .. 18
4.2 Abstract syntax of PDU body ... 18
4.3 PDUs for ASEs .. 20
4.4 Type definitions ... 23
4.5 Data types ... 26

5 Transfer syntax .. 28
5.1 Overview of encoding .. 28
5.2 APDU header encoding ... 28
5.3 APDU body encoding .. 29
5.4 Data type encoding rules ... 30

6 FAL protocol state machines structure .. 34
7 AP-context state machine ... 35
8 FAL service protocol machines (FSPMs) .. 35

8.1 General ... 35
8.2 Common parameters of the primitives ... 35
8.3 Variable ASE protocol machine (VARM) .. 36
8.4 Event ASE protocol machine (EVTM) .. 39
8.5 Load region ASE protocol machine (LDRM) ... 41
8.6 Function invocation ASE protocol machine (FNIM) .. 43
8.7 Time ASE protocol machine (TIMM) .. 47
8.8 Network management ASE protocol machine (NWMM) .. 51

9 Application relationship protocol machines (ARPMs) .. 55
9.1 General ... 55
9.2 Primitive definitions ... 55
9.3 State machine ... 56
9.4 Functions .. 64

10 DLL mapping protocol machine (DMPM) ... 65
10.1 General ... 65
10.2 Primitive definitions ... 66
10.3 DMPM state machine .. 67

Bibliography .. 70

Figure 1 – APDU overview .. 28

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 3 –

Figure 2 – Type field ... 29
Figure 3 – Identifier octet .. 29
Figure 4 – Length octet (one-octet format) .. 30
Figure 5 – Length octets (three-octet format) .. 30
Figure 6 – Relationships among protocol machines and adjacent layers 34
Figure 7 – State transition diagram of VARM .. 37
Figure 8 – State transition diagram of EVTM ... 40
Figure 9 – State transition diagram of LDRM ... 42
Figure 10 – State transition diagram of FNIM .. 44
Figure 11 – State transition diagram of TIMM.. 48
Figure 12 – State transition diagram of NWMM ... 52
Figure 13 – State transition diagram of the PTC-ARPM ... 57
Figure 14 – State transition diagram of the PTU-ARPM ... 59
Figure 15 – State transition diagram of the PSU-ARPM .. 60
Figure 16 – State transition diagram of the MTU-ARPM .. 62
Figure 17 – State transition diagram of the MSU-ARPM .. 63
Figure 18 – State transition diagram of DMPM .. 67

Table 1 – Conventions used for AE state machine definitions ... 17
Table 2 – Encoding of FalArHeader field ... 28
Table 3 – Primitives exchanged between FAL user and VARM .. 36
Table 4 – Parameters used with primitives exchanged FAL user and VARM 36
Table 5 – VARM state table – Sender transitions .. 37
Table 6 – VARM state table – Receiver transitions .. 38
Table 7 – Functions used by the VARM .. 39
Table 8 – Primitives exchanged between FAL user and EVTM .. 39
Table 9 – Parameters used with primitives exchanged FAL user and EVTM 39
Table 10 – EVTM state table – Sender transitions ... 40
Table 11 – EVTM state table – Receiver transitions .. 40
Table 12 – Functions used by the EVTM ... 40
Table 13 – Primitives exchanged between FAL user and LDRM .. 41
Table 14 – Parameters used with primitives exchanged FAL user and LDRM 41
Table 15 – LDRM state table – Sender transitions .. 42
Table 16 – LDRM state table – Receiver transitions .. 43
Table 17 – Functions used by the LDRM ... 43
Table 18 – Primitives exchanged between FAL user and FNIM ... 44
Table 19 – Parameters used with primitives exchanged FAL user and FNIM 44
Table 20 – FNIM state table – Sender transitions .. 45
Table 21 – FNIM state table – Receiver transitions ... 45
Table 22 – Functions used by the FNIM .. 47
Table 23 – Primitives exchanged between FAL user and TIMM ... 47
Table 24 – Parameters used with primitives exchanged FAL user and TIMM 47
Table 25 – TIMM states .. 48

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 4 – 61158-6-17 © IEC:2007

Table 26 – TIMM state table – Sender transitions ... 49
Table 27 – TIMM state table – Receiver transitions ... 50
Table 28 – Functions used by the TIMM .. 51
Table 29 – Primitives exchanged between FAL user and NWMM .. 51
Table 30 – Parameters used with primitives exchanged FAL user and NWMM 52
Table 31 – NWMM states .. 52
Table 32 – NWMM state table – Sender transitions ... 53
Table 33 – NWMM state table – Receiver transitions .. 54
Table 34 – Functions used by the NWMM ... 55
Table 35 – Primitives exchanged between FSPM and ARPM .. 56
Table 36 – Parameters used with primitives exchanged FSPM user and ARPM 56
Table 37 – PTC-ARPM states ... 56
Table 38 – PTC-ARPM state table – Sender transitions .. 57
Table 39 – PTC-ARPM state table – Receiver transitions .. 58
Table 40 – PTU-ARPM states ... 59
Table 41 – PTU-ARPM state table – Sender transitions .. 59
Table 42 – PTU-ARPM state table – Receiver transitions .. 60
Table 43 – PSU-ARPM states ... 60
Table 44 – PSU-ARPM state table – Sender transitions .. 61
Table 45 – PSU-ARPM state table – Receiver transitions.. 61
Table 46 – MTU-ARPM states ... 62
Table 47 – MTU-ARPM state table – Sender transitions .. 62
Table 48 – MTU-ARPM state table – Receiver transitions ... 63
Table 49 – MSU-ARPM states... 63
Table 50 – MSU-ARPM state table – Sender transitions.. 64
Table 51 – MSU-ARPM state table – Receiver transitions ... 64
Table 52 – Functions used by the ARPMs ... 65
Table 53 – Primitives exchanged between DMPM and ARPM ... 66
Table 54 – Primitives exchanged between data-link layer and DMPM 66
Table 55 – DMPM states ... 67
Table 56 – DMPM state table – Sender transitions .. 67
Table 57 – DMPM state table – Receiver transitions ... 69
Table 58 – Functions used by the DMPM .. 69

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 5 –

INTERNATIONAL ELECTROTECHNICAL COMMISSION

INDUSTRIAL COMMUNICATION NETWORKS –

FIELDBUS SPECIFICATIONS –

Part 6-17: Application layer protocol specification – Type 17 elements

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and

members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

NOTE Use of some of the associated protocol types is restricted by their intellectual-property-right holders. In all
cases, the commitment to limited release of intellectual-property-rights made by the holders of those rights permits
a particular data-link layer protocol type to be used with physical layer and application layer protocols in Type
combinations as specified explicitly in the IEC 61784 series. Use of the various protocol types in other
combinations may require permission from their respective intellectual-property-right holders.

IEC draws attention to the fact that it is claimed that compliance with this standard may involve the use of patents
as follows, where the [xx] notation indicates the holder of the patent right:

Type 17:

PCT Application No. PCT/JP2004/011537 [YEC] Communication control method

PCT Application No. PCT/JP2004/011538 [YEC] Communication control method

IEC takes no position concerning the evidence, validity and scope of these patent rights.

The holders of these patent rights have assured IEC that they are willing to negotiate licences under reasonable
and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of
the holders of these patent rights are registered with IEC. Information may be obtained from:

[YEC]: Yokogawa Electric Corporation
2-9-32 Nakacho, Musashino-shi, 180-8750 Tokyo,
180-8750 Tokyo,
Japan
Attention: Intellectual Property & Standardization Center

Attention is drawn to the possibility that some of the elements of this standard may be the subject of patent rights
other than those identified above. IEC shall not be held responsible for identifying any or all such patent rights.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 6 – 61158-6-17 © IEC:2007

International Standard IEC 61158-6-17 has been prepared by subcommittee 65C: Industrial
networks, of IEC technical committee 65: Industrial-process measurement, control and
automation.
This first edition and its companion parts of the IEC 61158-6 subseries cancel and replace
IEC 61158-6:2003. This edition of this part constitutes a technical addition. This part and its
Type 17 companion parts also cancel and replace IEC/PAS 62405, published in 2005.

This edition of IEC 61158-6 includes the following significant changes from the previous
edition:

a) deletion of the former Type 6 fieldbus for lack of market relevance;
b) addition of new types of fieldbuses;
c) partition of part 6 of the third edition into multiple parts numbered -6-2, -6-3, …

This bilingual version (2013-09) corresponds to the monolingual English version, published in
2007-12. The text of this standard is based on the following documents:

FDIS Report on voting

65C/476/FDIS 65C/487/RVD

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

The French version of this standard has not been voted upon.

This publication has been drafted in accordance with ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until
the maintenance result date indicated on the IEC web site under http://webstore.iec.ch in the
data related to the specific publication. At this date, the publication will be:

• reconfirmed;

• withdrawn;

• replaced by a revised edition, or

• amended.
NOTE The revision of this standard will be synchronized with the other parts of the IEC 61158 series.

The list of all the parts of the IEC 61158 series, under the general title Industrial
communication networks – Fieldbus specifications, can be found on the IEC web site.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

http://webstore.iec.ch/
https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 7 –

INTRODUCTION

This part of IEC 61158 is one of a series produced to facilitate the interconnection of
automation system components. It is related to other standards in the set as defined by the
“three-layer” fieldbus reference model described in IEC/TR 61158-1.

The application protocol provides the application service by making use of the services
available from the data-link or other immediately lower layer. The primary aim of this standard
is to provide a set of rules for communication expressed in terms of the procedures to be
carried out by peer application entities (AEs) at the time of communication. These rules for
communication are intended to provide a sound basis for development in order to serve a
variety of purposes:

• as a guide for implementors and designers;

• for use in the testing and procurement of equipment;

• as part of an agreement for the admittance of systems into the open systems environment;

• as a refinement to the understanding of time-critical communications within OSI.

This standard is concerned, in particular, with the communication and interworking of sensors,
effectors and other automation devices. By using this standard together with other standards
positioned within the OSI or fieldbus reference models, otherwise incompatible systems may
work together in any combination.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 8 – 61158-6-17 © IEC:2007

INDUSTRIAL COMMUNICATION NETWORKS –
FIELDBUS SPECIFICATIONS –

Part 6-17: Application layer protocol specification – Type 17 elements

1 Scope

1.1 General

The fieldbus application layer (FAL) provides user programs with a means to access the
fieldbus communication environment. In this respect, the FAL can be viewed as a “window
between corresponding application programs.”

This standard provides common elements for basic time-critical and non-time-critical
messaging communications between application programs in an automation environment and
material specific to Type 17 fieldbus. The term “time-critical” is used to represent the
presence of a time-window, within which one or more specified actions are required to be
completed with some defined level of certainty. Failure to complete specified actions within
the time window risks failure of the applications requesting the actions, with attendant risk to
equipment, plant and possibly human life.

This standard specifies interactions between remote applications and defines the externally
visible behavior provided by the Type 17 fieldbus application layer in terms of

a) the formal abstract syntax defining the application layer protocol data units conveyed
between communicating application entities;

b) the transfer syntax defining encoding rules that are applied to the application layer
protocol data units;

c) the application context state machine defining the application service behavior visible
between communicating application entities;

d) the application relationship state machines defining the communication behavior visible
between communicating application entities.

The purpose of this standard is to define the protocol provided to

1) define the wire-representation of the service primitives defined in IEC 61158-5-17, and
2) define the externally visible behavior associated with their transfer.

This standard specifies the protocol of the Type 17 fieldbus application layer, in conformance
with the OSI Basic Reference Model (ISO/IEC 7498) and the OSI application layer structure
(ISO/IEC 9545).

1.2 Specifications

The principal objective of this standard is to specify the syntax and behavior of the application
layer protocol that conveys the application layer services defined in IEC 61158-5-17.

A secondary objective is to provide migration paths from previously-existing industrial
communications protocols. It is this latter objective which gives rise to the diversity of
protocols standardized in the IEC 61158-6 series.

1.3 Conformance

This standard does not specify individual implementations or products, nor does it constrain
the implementations of application layer entities within industrial automation systems.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 9 –

Conformance is achieved through implementation of this application layer protocol
specification.

2 Normative reference

The following referenced documents are indispensable for the application of this document.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.

IEC 61158-5-17, Industrial communication networks – Fieldbus specifications - Part 5-17:
Application layer service definition – Type 17 elements

ISO/IEC 7498 (all parts), Information technology – Open Systems Interconnection – Basic
Reference Model

ISO/IEC 8824-2, Information technology – Abstract Syntax Notation One (ASN.1): Information
object specification

ISO/IEC 8825-1, Information technology – ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules
(DER)

ISO/IEC 9545, Information technology – Open Systems Interconnection – Application Layer
structure

ISO/IEC 10731, Information technology – Open Systems Interconnection – Basic Reference
Model – Conventions for the definition of OSI services

3 Definitions

For the purposes of this document, the following terms and definitions apply.

3.1 Terms and definitions

3.1.1 ISO/IEC 7498-1 terms

For the purposes of this document, the following terms as defined in ISO/IEC 7498-1 apply:

d) application entity
e) application protocol data unit
f) application service element

3.1.2 ISO/IEC 8824-2 terms

For the purposes of this document, the following terms as defined in ISO/IEC 8824 apply:

a) any type
b) bitstring type
c) Boolean type
d) choice type
e) false
f) integer type
g) null type
h) octetstring type

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 10 – 61158-6-17 © IEC:2007

i) sequence of type
j) sequence type
k) simple type
l) structured type
m) tagged type
n) true
o) type
p) value

3.1.3 ISO/IEC 10731 terms
a) (N)-connection
b) (N)-entity
c) (N)-layer
d) (N)-service
e) (N)-service-access-point
f) confirm (primitive)
g) indication (primitive)
h) request (primitive)
i) response (primitive)

3.1.4 Other terms and definitions

3.1.4.1
application
function or data structure for which data is consumed or produced

3.1.4.2
application process
part of a distributed application on a network, which is located on one device and
unambiguously addressed

3.1.4.3
application relationship
cooperative association between two or more application-entity-invocations for the purpose of
exchange of information and coordination of their joint operation

NOTE This relationship is activated either by the exchange of application-protocol-data-units or as a result of
preconfiguration activities

3.1.5
application relationship application service element
application-service-element that provides the exclusive means for establishing and
terminating all application relationships

3.1.5.1
application relationship endpoint
context and behavior of an application relationship as seen and maintained by one of the
application processes involved in the application relationship

NOTE Each application process involved in the application relationship maintains its own application relationship
endpoint.

3.1.5.2
attribute
description of an externally visible characteristic or feature of an object

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 11 –

NOTE The attributes of an object contain information about variable portions of an object. Typically, they provide
status information or govern the operation of an object. Attributes may also affect the behaviour of an object.
Attributes are divided into class attributes and instance attributes.

3.1.5.3
behaviour
indication of how an object responds to particular eventss

3.1.5.4
bridge
intermediate equipment that connects two or more segments using a data-link layer relay
function

3.1.5.5
channel
single physical or logical link of an input or output application object of a server to the process

3.1.5.6
class
a set of objects, all of which represent the same kind of system component

NOTE A class is a generalisation of an object; a template for defining variables and methods. All objects in a
class are identical in form and behaviour, but usually contain different data in their attributes.

3.1.5.7
client
a) object which uses the services of another (server) object to perform a task
b) initiator of a message to which a server reacts

3.1.5.8
connection
logical binding between application objects that may be within the same or different devices

NOTE 1 Connections may be either point-to-point or multipoint.

NOTE 2 The logical link between sink and source of attributes and services at different custom interfaces of RT-
Auto ASEs is referred to as interconnection. There is a distinction between data and event interconnections. The
logical link and the data flow between sink and source of automation data items is referred to as data
interconnection. The logical link and the data flow between sink (method) and source (event) of operational
services is referred to as event interconnection.

3.1.5.9
connection point
buffer which is represented as a subinstance of an Assembly object

3.1.5.10
conveyance path
unidirectional flow of APDUs across an application relationship

3.1.5.11
dedicated AR
AR used directly by the FAL User

NOTE On Dedicated ARs, only the FAL Header and the user data are transferred.

3.1.5.12
device
physical hardware connected to the link

NOTE A device may contain more than one node.

3.1.5.13
domain
part of the RTE network consisting of one or two subnetwork(s)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 12 – 61158-6-17 © IEC:2007

NOTE Two subnetworks are required to compose a dual-redundant RTE network, and each end node in the
domain is connected to both of the subnetworks.

3.1.5.14
domain master
station which performs diagnosis of routes to all other domains, distribution of network time to
nodes inside the domain, acquisition of absolute time from the network time master and
notification of status of the domain

3.1.5.15
domain number
numeric identifier which indicates a domain

3.1.5.16
end node
producing or consuming node

3.1.5.17
endpoint
one of the communicating entities involved in a connection

3.1.5.18
error
discrepancy between a computed, observed or measured value or condition and the specified
or theoretically correct value or condition

3.1.5.19
error class
general grouping for related error definitions and corresponding error codes

3.1.5.20
external bridge
bridge to which neither internal bridges nor RTE stations are connected directly

3.1.5.21
event
an instance of a change of conditions

3.1.5.22
group
a) <general> a general term for a collection of objects. Specific uses:
b) <addressing> when describing an address, an address that identifies more than one entity

3.1.5.23
interface
a) shared boundary between two functional units, defined by functional characteristics,

signal characteristics, or other characteristics as appropriate
b) collection of FAL class attributes and services that represents a specific view on the FAL

class

3.1.5.24
interface port
physical connection point of an end node, which has an independent DL-address

3.1.5.25
internal bridge
bridge to which no routers, external bridges or nodes non-compliant with this specification are
connected directly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 13 –

3.1.5.26
invocation
act of using a service or other resource of an application process

NOTE Each invocation represents a separate thread of control that may be described by its context. Once the
service completes, or use of the resource is released, the invocation ceases to exist. For service invocations, a
service that has been initiated but not yet completed is referred to as an outstanding service invocation. Also for
service invocations, an Invoke ID may be used to unambiguously identify the service invocation and differentiate it
from other outstanding service invocations.

3.1.5.27
junction bridge
bridge to which at least one router, external bridge or node non-compliant with this
specification, and to which at least one internal bridge or RTE station is connected

3.1.5.28
link
physical communication channel between two nodes

3.1.5.29
method
<object> a synonym for an operational service which is provided by the server ASE and
invoked by a client

3.1.5.30
network
a set of nodes connected by some type of communication medium, including any intervening
repeaters, bridges, routers and lower-layer gateways

3.1.5.31
network time master
station which distributes network time to domain masters

3.1.5.32
node
single DL-entity as it appears on one local link

3.1.5.33
non-redundant interface node
node whch has a single interface port

3.1.5.34
non-redundant station
station that consists of a single end node

NOTE “non-redundant station” is synonymous with “end node”.

3.1.5.35
object
abstract representation of a particular component within a device, usually a collection of
related data (in the form of variables) and methods (procedures) for operating on that data
that have clearly defined interface and behaviour

3.1.5.36
originator
client responsible for establishing a connection path to the target

3.1.5.37
path
logical communication channel between two nodes, which consists of one or two link(s)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 14 – 61158-6-17 © IEC:2007

3.1.5.38
peer
role of an AR endpoint in which it is capable of acting as both client and server

3.1.5.39
producer
node that is responsible for sending data

3.1.5.40
provider
source of a data connection

3.1.5.41
publisher
role of an AR endpoint that transmits APDUs onto the fieldbus for consumption by one or
more subscribers

NOTE A publisher may not be aware of the identity or the number of subscribers and it may publish its APDUs
using a dedicated AR.

3.1.5.42
redundant interface node
node with two interface ports one of which is connected to a primary network, while the other
is connected to a secondary network

3.1.5.43
redundant station
station that consists of a pair of end nodes

NOTE Each end node of a redundant station has the same station number, but has a different DL-address.

3.1.5.44
resource
a processing or information capability of a subsystem

3.1.5.45
RTE station
station compliant with this specification

3.1.5.46
route
logical communication channel between two communication end nodes

3.1.5.47
router
intermediate equipment that connects two or more subnetworks using a network layer relay
function

3.1.5.48
segment
communication channel that connects two nodes directly without intervening bridges

3.1.5.49
server
a) role of an AREP in which it returns a confirmed service response APDU to the client that

initiated the request
b) object which provides services to another (client) object

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 15 –

3.1.5.50
service
operation or function than an object and/or object class performs upon request from another
object and/or object class

3.1.5.51
station
end node or a pair of end nodes that perform a specific application function

3.1.5.52
station number
numeric identifier which indicates a RTE station

3.1.5.53
subnetwork
part of a network that does not contain any routers. A subnetwork consists of end nodes,
bridges and segments

NOTE Every end node included in a subnetwork has the same IP network address.

3.1.5.54
subscriber
role of an AREP in which it receives APDUs produced by a publisher

3.2 Abbreviations and symbols

3.2.1 ISO/IEC 10731 abbreviations
ASE application-service-element
OSI Open Systems Interconnection

3.2.2 ISO/IEC 7498-1 abbreviations and symbols
DL- Data-link layer (as a prefix)
DLL DL-layer
DLM DL-management
DLS DL-service
DLSAP DL-service-access-point
DLSDU DL-service-data-unit

3.2.3 IEC 61158-5-17 abbreviations and symbols
AE application entity
AL application layer
AP application process
APDU application protocol data unit
AR application relationship
AREP application relationship endpoint
ASN.1 abstract syntax notation one
BCD binary coded decimal
Cnf confirmation
cnf confirmation primitive
Ev_ prefix for data types defined for event ASE
FAL fieldbus application layer
Gn_ prefix for data types defined for general use

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 16 – 61158-6-17 © IEC:2007

ID identifier
IEC International Electrotechnical Commission
Ind indication
ind indication primitive
IP Internet protocol
ISO International Organization for Standardization
lsb least significant bit
msb most significant bit
PDU protocol data unit
Req request
req request primitive
Rsp response
rsp response primitive
SAP service access point
SDU service data unit

3.2.4 Other abbreviations and symbols
ARPM application relationship protocol machine
FSPM FAL service protocol machine
MSU-AR multipoint network-scheduled unconfirmed publisher/subscriber AREP
MTU-AR multipoint user-triggered unconfirmed publisher/subscriber AREP
PSU-AR point-to-point network-scheduled unconfirmed client/server AREP
PTC-AR point-to-point user-triggered confirmed client/server AREP
PTU-AR point-to-point user-triggered unconfirmed client/server AREP

3.3 Conventions

3.3.1 General conventions

This standard uses the descriptive conventions given in ISO/IEC 10731.

This standard uses the descriptive conventions given in IEC 61158-5 subseries for FAL
service definitions.

3.3.2 Conventions for APDU abstract syntax definitions

This standard uses the descriptive conventions given in ISO/IEC 8824-2 for APDU definitions.

3.3.3 Conventions for APDU transfer syntax definitions

This standard uses the descriptive conventions given in ISO/IEC 8825-1 for transfer syntax
definitions.

3.3.4 Conventions for AE state machine definitions

The conventions used for AE state machine definitions are described in Table 1.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 17 –

Table 1 – Conventions used for AE state machine definitions

No. Current state Event / condition => action Next state

Name of this
transition

The current
state to which
this state
transition
applies

Events or conditions that trigger this state
transition.
=>
The actions that are taken when the above
events or conditions are met. The actions are
always indented below events or conditions

The next state
after the
actions in this
transition are
taken

The conventions used in the descriptions for the events, conditions and actions are as follows:

:= The value of an item on the left is replaced by the value of an item on the right. If an item
on the right is a parameter, it comes from the primitive shown as an input event.

xxx Parameter name.
Example:

Identifier := reason
means value of the ‘reason’ parameter is assigned to the parameter called

‘Identifier.’
“xxx” Indicates fixed value.

Example:
Identifier := “abc”
means value “abc” is assigned to a parameter named ‘Identifier.’

= A logical condition to indicate an item on the left is equal to an item on the right.
< A logical condition to indicate an item on the left is less than the item on the right.
> A logical condition to indicate an item on the left is greater than the item on the right.
<> A logical condition to indicate an item on the left is not equal to an item on the right.
&& Logical “AND”
|| Logical “OR”

The sequence of actions and the alternative actions can be executed using the following
reserved words.

for
endfor
if
else
elseif

The following shows examples of description using the reserved words.
Example 1:

for (Identifier := start_value to end_value)
actions

endfor
Example 2:

If (condition)
actions

else
actions

endif

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 18 – 61158-6-17 © IEC:2007

4 Abstract syntax description

4.1 FAL PDU abstract syntax

4.1.1 Top level definition
FalArPDU ::=
 ConfirmedSend-CommandPDU
 || ConfirmedSend-ResponsePDU
 || UnconfirmedSend-CommandPDU

4.1.2 FalArHeader
FalArHeader ::= Unsigned8{
 -- bit 8-7 ProtocolVersion
 -- bit 6-4 ProtocolIdentifier
 -- bit 3-1 PDUIdentifier
}

4.1.3 Confirmed send service
ConfirmedSend-CommandPDU ::= SEQUENCE {
 FalArHeader,
 ServiceType
 InvokeID,
 ConfirmedServiceRequest
}

ConfirmedSend-ResponsePDU ::= SEQUENCE {
 FalArHeader,
 ServiceType
 InvokeID,
 ConfirmedServiceResponse
}

4.1.4 Unconfirmed send service
UnconfirmedSend-CommandPDU ::= SEQUENCE {
 FalArHeader,
 ServiceType
 InvokeID,
 UnconfirmedServiceRequest
}

4.2 Abstract syntax of PDU body

4.2.1 ConfirmedServiceRequest PDUs
ConfirmedServiceRequest ::= CHOICE {
 Read-Request [0] IMPLICIT Read-RequestPDU,
 Write-Request [1] IMPLICIT Write-RequestPDU,
 DownLoad-Request [2] IMPLICIT DownLoad-RequestPDU,
 UpLoad-Request [3] IMPLICIT UpLoad-RequestPDU,
 Start-Request [4] IMPLICIT Start-RequestPDU,
 Stop-Request [5] IMPLICIT Stop-RequestPDU,
 Resume- Request [6] IMPLICIT Resume-RequestPDU,
 DelayCheck-Request [7] IMPLICIT Time- RequestPDU,
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 19 –

4.2.2 ConfirmedServiceResponse PDUs
ConfirmedServiceResponse ::= CHOICE {
 Read-Response [0] IMPLICIT Read-ResponsePDU,
 Write-Response [1] IMPLICIT Write-ResponsePDU,
 DownLoad-Response [2] IMPLICIT DownLoad-ResponsePDU,
 UpLoad-Response [3] IMPLICIT UpLoad-ResponsePDU,
 Start-Response [4] IMPLICIT Start-ResponsePDU,
 Stop-Response [5] IMPLICIT Stop-ResponsePDU,
 Resume-Response [6] IMPLICIT Resume-ResponsePDU,
 DelayCheck-Response [7] IMPLICIT Time-ResponsePDU
}

4.2.3 Unconfirmed PDUs
UnconfirmedServiceRequest ::= CHOICE {
 InformationReport-Request [0] IMPLICIT InformationReport-RequestPDU,
 EventNotification-Request [1] IMPLICIT EventNotification-RequestPDU,
 EventRecovery-Request [2] IMPLICIT EventRecovery-RequestPDU,
 TimeDistribution-Request [3] IMPLICIT TimeDistribute-RequestPDU,
 SetTime-Request [4] IMPLICIT SetTime-RequestPDU,
 InDiag-Request [5] IMPLICIT InDiag-RequestPDU,
 ExDiag-Request [6] IMPLICIT ExDiag-RequestPDU,
 StationStatusReport-Request [7] IMPLICIT StationStatusReport-RequestPDU,
 DomainStatusReport-Request [8] IMPLICIT DomainStatusReport-RequestPDU
}

4.2.4 Error information

4.2.4.1 Error type
ErrorType ::= SEQUENCE {
 errorClass [0] IMPLICIT ErrorClass,
 additionalCode [1] IMPLICIT Integer16 OPTIONAL,
 additionalDescription [2] IMPLICIT VisibleString OPTIONAL,
 additionalInfo [3] IMPLICIT ANY OPTIONAL
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 20 – 61158-6-17 © IEC:2007

4.2.4.2 Error class
ErrorClass ::= CHOICE {
 noError [0] IMPLICIT Integer8 {
 normal (0),
 other (1)
 }
 applicationReference [1] IMPLICIT Integer8 {
 other (0),
 application-unreachable (1),
 application-reference-invalid (2),
 context-unsupported (3)
 }
 definition [2] IMPLICIT Integer8 {
 other (0),
 object-undefined (1),
 object-attributes-inconsistent (2),
 name-already-exists (3),
 type-unsupported (4),
 type-inconsistent (5)
 }
 resource [3] IMPLICIT Integer8 {
 other (0),
 memory-unavailable (1)
 }
 service [4] IMPLICIT Integer8 {
 other (0),
 object-state-conflict (1),
 pdu-size (2),
 object-constraint-conflict (3),
 parameter-inconsistent (4),
 illegal-parameter (5)
 }
 access [5] IMPLICIT Integer8 {
 other (0),
 object-invalidated (1),
 hardware-fault (2),
 object-access-denied (3),
 invalid-address (4),
 object-attribute-inconsistent (5),
 object-access-unsupported (6),
 object-non-existent (7),
 type-conflict (8),
 named-access-unsupported (9),
 access-to-element-unsupported (10)
 }
 conclude [6] IMPLICIT Integer8 {
 other (0)
 }
 other [7] IMPLICIT Integer8 {
 other (0)
 }
}

4.3 PDUs for ASEs

4.3.1 PDUs for Variable ASE

4.3.1.1 Read service PDUs
Read-RequestPDU ::= SEQUENCE {
 objectSpecifier CHOICE{
 variableSpecifier Gn_KeyAttribute,
 variableListSpecifier Gn_KeyAttribute,
 listOfvariable SEQUENCE OF Gn_KeyAttribute
 }
 optionalParameters [0] IMPLICIT ANY OPTIONAL
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 21 –

Read-ResponsePDU ::= SEQUENCE {
 result CHOICE{
 accessStatus [0] IMPLICIT ErrorType,
 listOfAccessStatus [1] IMPLICIT SEQUENCE OF ErrorType
 }
 value CHOICE{
 data [0] IMPLICIT ANY,
 listOfData [1] IMPLICIT SEQUENCE OF ANY
 }
 variableType CHOICE{
 dataType [0] IMPLICIT Gn_FullyNestedTypeDescription OPTIONAL,
 listOfDataType [1] IMPLICIT SEQUENCE OF Gn_FullyNestedTypeDescription

OPTIONAL

 }
 optionalParameters [0] IMPLICIT ANY OPTIONAL
}

4.3.1.2 Write service PDUs
Write-RequestPDU ::= SEQUENCE {
 objectSpecifier CHOICE{
 variableSpecifier Gn_KeyAttribute,
 variableListSpecifier Gn_KeyAttribute,
 listOfVariable SEQUENCE OF Gn_KeyAttribute
 }
 variableType CHOICE{
 dataType [0] IMPLICIT Gn_FullyNestedTypeDescription OPTIONAL,
 listOfDataType [1] IMPLICIT SEQUENCE OF Gn_FullyNestedTypeDescription

OPTIONAL

 }
 value CHOICE{
 data [0] IMPLICIT ANY,
 listOfData [1] IMPLICIT SEQUENCE OF ANY
 }
 optionalParameters [0] IMPLICIT ANY OPTIONAL
}

Write-ResponsePDU ::= SEQUENCE {
 result CHOICE{
 accessStatus [0] IMPLICIT ErrorType,
 listOfAccessStatus [1] IMPLICIT SEQUENCE OF ErrorType
 }
 optionalParameters [0] IMPLICIT ANY OPTIONAL
}

4.3.1.3 Information Report service PDUs
InformationReport-RequestPDU::= SEQUENCE {
 ListOfVariableSpecifier CHOICE {
 variableListSpecifier Gn_KeyAttribute,
 listOfVariable SEQUENCE OF Gn_KeyAttribute
 },
 listOfDataType [1] IMPLICIT SEQUENCE OF Gn_FullyNestedTypeDescription

OPTIONAL

 listOfData [2] IMPLICIT SEQUENCE OF ANY
 optionalParameters [3] IMPLICIT ANY OPTIONAL
}

4.3.2 PDUs for Event ASE

4.3.2.1 Event Notification service
EventNotification-RequestPDU ::= SEQUENCE {
 eventNotifierID IMPLICIT Gn_ KeyAttribute,,
 notificvationSequenceNumber [1] IMPLICIT Ev_SequenceNumber,
 listOfEvent [2] IMPLICIT SEQUENCE OF Ev_EventData,
 Notification Time [3] IMPLICIT Ev_TimeTag OPTIONAL
 optionalParameters [4] IMPLICIT ANY OPTIONAL
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 22 – 61158-6-17 © IEC:2007

4.3.2.2 Notification Recovery service
EventRecovery-RequestPDU ::= SEQUENCE {
 eventNotifierID IMPLICIT Gn_ KeyAttribute,,
 sequenceNumber [1] IMPLICIT Ev_SequenceNumber OPTIONAL
}

4.3.3 PDUs for Load region ASE

4.3.3.1 Download service
DownLoad-RequestPDU ::= SEQUENCE {
 loadRegionKeyAttribute Gn_KeyAttribute,
 segmentIdentifier [1] IMPLICIT ANY,
 loadData [2] IMPLICIT octetString,
}

DownLoad-ResponsePDU ::= SEQUENCE {
 loadRegionKeyAttribute Gn_KeyAttribute,
 result [1] IMPLICIT ErrorType,
}

4.3.3.2 Upload service
UpLoad-RequestPDU ::= SEQUENCE {
 loadRegionKeyAttribute Gn_KeyAttribute,
 segmentIdentifier [1] IMPLICIT ANY,
}

UpLoad-ResponsePDU ::= SEQUENCE {
 loadRegionKeyAttribute Gn_KeyAttribute,
 result [1] IMPLICIT ErrorType,
 loadData [2] IMPLICIT octetString,
}

4.3.4 PDUs for Function Invocation ASE

4.3.4.1 Start service
Start-RequestPDU ::= SEQUENCE {
 keyAttribute Gn_KeyAttribute,
 optionalParameters [1] IMPLICIT ANY OPTIONAL
}

Start-ResponsePDU ::= ErrorType

4.3.4.2 Stop service
Stop-RequestPDU ::= SEQUENCE {
 keyAttribute Gn_KeyAttribute,
 optionalParameters [1] IMPLICIT ANY OPTIONAL
}

Stop-ResponsePDU ::= ErrorType

4.3.4.3 Resume services
Resume-RequestPDU ::= SEQUENCE {
 keyAttribute Gn_KeyAttribute,
 optionalParameters [1] IMPLICIT ANY OPTIONAL
}

Resume-ResponsePDU ::= ErrorType

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 23 –

4.3.5 PDUs for Time ASE

4.3.5.1 Time service
Time-RequestPDU ::= Time-PDU

Time-ResponsePDU ::= Time-PDU

TimeDistribute-RequestPDU ::= Time-PDU

Time-PDU ::= SEQUENCE {
 timeControl [0] IMPLICIT Tm_TimeControl,
 Stratum [1] IMPLICIT Unsigned8
 PollInterval [2] IMPLICIT Tm_TimeValue1,
 Precision [3] IMPLICIT Tm_TimeValue1,
 rootDelay [4] IMPLICIT Tm_TimeValue2,
 rootDispersion [5] IMPLICIT Tm_TimeValue2,
 referenceIdentifier [6] IMPLICIT Tm_ReferenceID,
 referenceTimestamp [7] IMPLICIT Tm_Time,
 originateTimestamp [8] IMPLICIT Tm_Time,
 receiveTimestamp [9] IMPLICIT Tm_Time,
 transmitTimestamp [10] IMPLICIT Tm_Time,
}

SetTime-RequestPDU ::= SEQUENCE {
 timeValue [0] IMPLICIT Tm_Time,
 optionalParameters [1] IMPLICIT ANY OPTIONAL
}

4.3.6 PDUs for Network Management ASE

4.3.6.1 Network Management service
InDiag-RequestPDU ::= SEQUENCE {
 nodeInformation [0] IMPLICIT Nm_NodeInformation,
 nodeStatus [1] IMPLICIT Nm_NodeStatus,
 nodePublicKey [2] IMPLICIT Nm_PublicKey,
 llistOfPathStatus [3] IMPLICIT Nm_ListOfPathStatus
}

ExDiag-RequestPDU ::= SEQUENCE {
 doaminInformation [0] IMPLICIT Nm_DoaminInformation,
 domainStatus [1] IMPLICIT Nm_DoaminStatus,
 domainPublicKey [2] IMPLICIT Nm_PublicKey,
 masterPriority [3] IMPLICIT Unsigned8,
 llistOfPathStatus [4] IMPLICIT Nm_ListOfPathStatus,
 listOfNodeStatus [5] IMPLICIT SEQUENCE OF Nm_NodeStatus
}

StationStatusReport-RequestPDU ::= SEQUENCE {
 nodeInformation [0] IMPLICIT Nm_NodeInformation,
 nodeStatus [1] IMPLICIT Nm_NodeStatus
}

DomainStatusReport-RequestPDU ::= SEQUENCE {
 doaminInformation [0] IMPLICIT Nm_DoaminInformation,
 domainStatus [1] IMPLICIT Nm_DomainStatus
}

4.4 Type definitions

4.4.1 Variable ASE types

There are no types special for the Variable ASE.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 24 – 61158-6-17 © IEC:2007

4.4.2 Event ASE types
Ev_SequenceNumber ::= Unsigned8

Ev_EventData ::= ANY

En_EventCount ::= Unsigned8

Ev_TimeTag ::= Unsigned16

4.4.3 Load Region ASE types

There are no types special for the Load Region ASE.

4.4.4 Function Invocation ASE types

There are no types special for the function Invocation ASE.

4.4.5 Time ASE types
Tm_TimeControl ::= BitString8 {
 -- bit 8,7 LeapIndidator
 -- bit 6-4 ProtocolVersion
 -- bit 3-1 TimeMode
}

Tm_TimeValue1 ::= Unsigned32 -- eight-bit signed integer, in seconds to the nearest power of two

Tm_TimeValue2 ::= Unsigned32 -- 32-bit signed fixed-point number, in seconds

-- with fraction point between bits 15 and 16

Tm_ReferenceID ::= VisibleString4 -- identifies the particular reference source

Tm_Time ::= SEQUENCE{
 Seconds [0] Unsigned32
 SecondsFraction [2] Unsigned32
}

4.4.6 Network Management ASE types
Nm_NodeInformation ::= SEQUENCE {
 NodeIdentifier [0] IMPLICIT Nm_NodeIdentifier,
 NoOfInterfaces [1] IMPLICIT Integer8,
 InterfaceID [2] IMPLICIT Unsigned8,
 PerformanceClass SEQUENCE {
 MasterPriority [11] IMPLICIT Unsigned8,
 TransmissionClass [12] IMPLICIT Unsigned8,
 ResponseClass [13] IMPLICIT Unsigned8,
 TimePrecisionLevel [14] IMPLICIT Unsigned8,
 }
 configurationSUM [4] IMPLICIT Unsigned32,
 localNodeTime [5] IMPLICIT Tm_Time,
 diagInterval [6] IMPLICIT BinaryTime2,
 stationCoefficeincy [7] IMPLICIT Unsigned16
}

Nm_NodeStatus ::= BitString8 {
 -- bit 8 CPU-Status -- True: ready, False: not ready
 -- bit 7 communication-status -- True: ready, False: not ready
 -- bit 6 reserved-status -- True: reserved, False: not reserved
 -- bit 5 redundancy-status -- True: on-service, False: stand-by
 -- bit 4 linkStatusOfnterfaceB -- True: linked, False: not linked
 -- bit 3 linkStatusOfnterfaceA -- True: linked, False: not linked
 -- bit 2 statusOfNetworkB -- True: healthy, False: failed
 -- bit 1 statusOfNetworkA -- True: healthy, False: failed
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 25 –

Nm_PublicKey ::= Unsigned64

Nm_ListOfPathStatus ::= CompactBooleanArray -- True: healthy, False: failed

Nm_DoaminInformation ::= SEQUENCE {
 NodeIdentifier [0] IMPLICIT Nm_NodeIdentifier,
 NoOfInterfaces [1] IMPLICIT Integer8,
 InterfaceID [2] IMPLICIT Unsigned8,
 localNodeTime [3] IMPLICIT Tm_Time,
 diagInterval [4] IMPLICIT BinaryTime2,
}

Nm_DomainStatus ::= BitString8 {
 -- bit 8 statusOfNetworkB -- True: healthy, False: failed
 -- bit 7 statusOfNetworkA -- True: healthy, False: failed
 -- bit 6,5 StatusOfTimeSynchronization -- 00: not synchronized

-- 01: synchronized with the domain time master
-- 10: synchronized with the network time master
-- 11: synchronized with the external time source

 -- bit 4-1 TimeGroup
}

Nm_NodeIdentifier ::= SEQUENCE {
 DomainNumber [0] IMPLICIT Integer8,
 StationNumber [1] IMPLICIT Integer8
}

4.4.7 General types

4.4.7.1 Gn_KeyAttribute
Gn_KeyAttribute ::= CHOICE {
-- When this type is specified, only the key attributes of the class referenced are valid.
 numericID [0] IMPLICIT Gn_NumericID,
 name [1] IMPLICIT Gn_Name,
 listName [2] IMPLICIT Gn_Name,
 numericAddress [4] IMPLICIT Gn_NumericAddress,
 symbolicAddress [5] IMPLICIT Gn_SymbolicAddress
}

4.4.7.2 Gn_Name
Gn_Name ::= octetString

4.4.7.3 Gn_NumericAddress
Gn_NumericAddress ::= SEQUENCE {
 startAddress [0] IMPLICIT Unsigned32, -- physical address of the starting location
 length [1] IMPLICIT Unsigned16 -- octet length of a memory block
}

4.4.7.4 Gn_NumericID
Gn_NumericID ::= Unsigned16 -- The values of this parameter are unique within an AP.

4.4.7.5 Gn_SymbolicAddress
Gn_SymbolicAddress ::= VisibleString

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 26 – 61158-6-17 © IEC:2007

4.4.7.6 Gn_FullyNestedTypeDescription
Gn_FullyNestedTypeDescription ::= CHOICE {
 boolean [1] Unsigned8,
 integer8 [2] Unsigned8,
 integer16 [3] Unsigned8,
 integer32 [4] Unsigned8,
 unsigned8 [5] Unsigned8,
 unsigned16 [6] Unsigned8,
 unsigned32 [7] Unsigned8,
 float32 [8] Unsigned8,
 float64 [9] Unsigned8,
 binaryDate [10] Unsigned8,
 timeOfDay [11] Unsigned8,
 timeDifference [12] Unsigned8,
 universalTime [13] Unsigned8,
 fieldbusTime [14] Unsigned8,
 time [15] Unsigned8,
 bitstring8 [16] Unsigned8,
 bitstring16 [17] Unsigned8,
 bitstring32 [18] Unsigned8,
 visiblestring1 [19] Unsigned8,
 visiblestring2 [20] Unsigned8,
 visiblestring4 [21] Unsigned8,
 visiblestring8 [22] Unsigned8,
 visiblestring16 [23] Unsigned8,
 octetstring1 [24] Unsigned8,
 octetstring2 [25] Unsigned8,
 octetstring4 [26] Unsigned8,
 octetstring8 [27] Unsigned8,
 octetstring16 [28] Unsigned8,
 bcd [29] Unsigned8,
 iso10646char [30] Unsigned8,
 binarytime0 [31] Unsigned8,
 binarytime1 [32] Unsigned8,
 binarytime2 [33] Unsigned8,
 binarytime3 [34] Unsigned8,
 binarytime4 [35] Unsigned8,
 binarytime5 [36] Unsigned8,
 binarytime6 [37] Unsigned8,
 binarytime7 [38] Unsigned8,
 binarytime8 [39] Unsigned8,
 binarytime9 [40] Unsigned8,
 visiblestring [41] Unsigned8,
 octetstring [42] Unsigned8,
 bitstring [43] Unsigned8,
 compactBooleanArray [44] Unsigned8,
 compactBCDArray [45] Unsigned8,
 iso646string [46] Unsigned8,
 structure [47] IMPLICIT SEQUENCE OF Gn_FullyNestedTypeDescription
}

4.5 Data types

4.5.1 Notation for the Boolean type
Boolean ::= BOOLEAN -- TRUE if the value is non-zero.
 -- FALSE if the value is zero.

4.5.2 Notation for the Integer type
Integer ::= INTEGER -- any integer
Integer8 ::= INTEGER (-128..+127) -- range -27 <= i <= 27-1
Integer16 ::= INTEGER (-32768..+32767) -- range -215 <= i <= 215-1
Integer32 ::= INTEGER -- range -231 <= i <= 231-1

4.5.3 Notation for the Unsigned type
Unsigned ::= INTEGER -- any non-negative integer
Unsigned8 ::= INTEGER (0..255) -- range 0 <= i <= 28-1
Unsigned16 ::= INTEGER (0..65535) -- range 0 <= i <= 216-1
Unsigned32 ::= INTEGER -- range 0 <= i <= 232-1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 27 –

4.5.4 Notation for the Floating Point type
Floating32 ::= BIT STRING SIZE (4) -- IEC-60559Single precision
Floating64 ::= BIT STRING SIZE (8) -- IEC-60559Double precision

4.5.5 Notation for the BitString type
BitString ::= BIT STRING -- For generic use
BitString4 ::= BIT STRING SIZE (4) -- Fixed four bits bitstring
BitString8 ::= BIT STRING SIZE (8) -- Fixed eight bits bitstring
BitString16 ::= BIT STRING SIZE (16) -- Fixed 16 bits bitstring
BitString32 ::= BIT STRING SIZE (32) -- Fixed 32 two bits bitstring

4.5.6 Notation for the octetString type
octetString ::= OCTET STRING -- For generic use
octetString2 ::= OCTET STRING SIZE (2) -- Fixed two-octet octet string
octetString4 ::= OCTET STRING SIZE (4) -- Fixed four-octet octet string
octetString6 ::= OCTET STRING SIZE (6) -- Fixed six-octet octet string
octetString7 ::= OCTET STRING SIZE (7) -- Fixed seven-octet octet string
octetString8 ::= OCTET STRING SIZE (8) -- Fixed eight-octet octet string
octetString16 ::= OCTET STRING SIZE (16) -- Fixed 16 octet octet string

4.5.7 Notation for VisibleString type
VisibleString2 ::= VisibleString SIZE (2) -- Fixed two-octet visible string
VisibleString4 ::=VisibleString SIZE (4) -- Fixed four-octet visible string
VisibleString8 ::= VisibleString SIZE (8) -- Fixed eight-octet visible string
VisibleString16 ::= VisibleString SIZE (16) -- Fixed 16 octet visible string

4.5.8 Notation for the UNICODEString type
UNICODEString ::= UNICODEString -- 16-bit character code set defined in ISO 10646.

4.5.9 Notation for Binary Time type
BinaryTime0 ::= BIT STRING SIZE (16) -- 10 µs resolution
BinaryTime1 ::= BIT STRING SIZE (16) -- 0.1 ms resolution
BinaryTime2 ::= BIT STRING SIZE (16) -- 1 ms resolution
BinaryTime3 ::= BIT STRING SIZE (16) -- 10 ms resolution
BinaryTime4 ::= BIT STRING SIZE (16) -- 0.1 s resolution
BinaryTime5 ::= BIT STRING SIZE (16) -- 1 s resolution
BinaryTime6 ::= BIT STRING SIZE (32) -- 10 µs resolution
BinaryTime7 ::= BIT STRING SIZE (32) -- 0.1 ms resolution
BinaryTime8 ::= BIT STRING SIZE (32) -- 1 ms resolution
BinaryTime9 ::= BIT STRING SIZE (32) -- 10 ms resolution

4.5.10 Notation for BCD type
BCD ::= Unsigned8 (0..9) -- Lower four bits are used to express one BCD value.

4.5.11 Notation for Compact Boolean Array type
CompactBooleanArray ::= BitString -- Each zero bit representing Boolean value FALSE.
 -- Each one bit representing Boolean value TRUE.
 -- Unused bits, if any, shall be placed in bits 7-1 of the last octet.

4.5.12 Notation for Compact BCD Array type
CompactBCDArray ::= octetString -- One BCD value is represented by four bits, an unused
 -- nibble, if any, shall be placed in bits 4-1 of the last octet,
 -- and shall be set to 1111F.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 28 – 61158-6-17 © IEC:2007

5 Transfer syntax

5.1 Overview of encoding

The FAL-PDUs encoded shall have a uniform format. The FAL-PDUs shall consist of two
major parts, the “APDU Header” part and the “APDU Body” part as shown in Figure 1.

(1) (1) (1) (n) --- octets

FalArHeader Field Type Field (InvokeID) Service Specific Parameters
<------------------- APDU Header ----------------> <----------------- APDU Body ----------------->

NOTE The presence of the InvokeID Field depends on the APDU type.

Figure 1 – APDU overview

To realize an efficient APDU while maintaining flexible encoding, different encoding rules are
used for the APDU Header part and the APDU Body part.

NOTE The data-link layer service provides a DLSDU parameter that implies the length of the APDU. Thus, the
APDU length information is not included in the APDU.

5.2 APDU header encoding

The APDU Header part is always present in all APDUs that conform to this standard. It
consists of three fields: the FalArHeader Field, the Type Field, and the optional InvokeID Field.

They are shown in Figure 1.

5.2.1 Encoding of FalArHeader field

All the FAL PDUs shall have the common PDU-header called FalArHeader. The FalArHeader
identifies abstract syntax, transfer syntax, and each of the PDUs. Table 2 defines how this
header shall be used.

Table 2 – Encoding of FalArHeader field

Bit position of the
FalArHeader PDU type Protocol version

8 7 6 5 4 3 2 1
01 001 000 ConfirmedSend-CommandPDU Version 1
01 001 100 ConfirmedSend-ResponsePDU Version 1
01 010 000 UnconfirmedSend-CommandPDU Version 1

NOTE All other code points are reserved for additional protocols and future revisions.

5.2.2 Encoding of Type field
a) The service type of an APDU is encoded in the Type Field that is always the second octet
of the APDUs.
b) All bits of the Type Field are used to encode the service type.

1) The service types shall be encoded in bits 8 to 1 of the Type Field, with bit 8 the most
significant bit and bit 1 the least significant bit. The range of service type shall be
between 0 (zero) and 254, inclusive.

2) The value of 255 is reserved for future extensions to this specification.
3) The service type is specified in the abstract syntax as a positive integer value.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 29 –

c) Figure 2 illustrates the encoding of the Type Field.

8 7 6 5 4 3 2 1

Service type

Figure 2 – Type field

5.2.3 Encoding of InvokeID Field

The InvokeID Field shall be present if it is indicated in the abstract syntax. Otherwise, this
field shall not be present. If present, the InvokeID parameter supplied by a service primitive
shall be placed in this field.

5.3 APDU body encoding

5.3.1 General

The FAL encoding rules are based on the terms and conventions defined in ISO/IEC 8825-1.
The encoding consists of three components in the following order:

 Identifier octet
 Length octet(s)
 Contents octet(s)
5.3.2 Identifier octet

The Identifier octet shall encode the tag defined in the FAL Abstract Syntax and shall consist
of one octet.

It consists of the P/C flag and the Tag field as shown in Figure 3.

8 7 6 5 4 3 2 1

P/C Tag field

Figure 3 – Identifier octet

The P/C flag indicates that the Contents octet(s) is either a simple component (primitive types,
such as Integer8), or a structured component (constructed, such as SEQUENCE, SEQUENCE
OF types).

P/C Flag =0 means the Contents octet(s) is a simple component.
P/C Flag =1 means the Contents octet(s) is a structured component.

The Tag field identifies the semantics of the Contents octet(s).

5.3.3 Length octet(s)

The Length octet(s) shall consist of one or three octets.

a) If the value of the first Length octet is other than 255, there shall be no subsequent Length
octet(s) and the first octet shall contain the value for the Length octet defined later.

b) If the value of the first Length octet is 255, there shall be two subsequent Length octet(s)
that shall contain the values for the Length octets defined later. In this case, the length
information of the Contents octet(s) shall be represented by the last two octets of the
Length octets, where the most significant bit of the second of three Length octets shall be
the most significant bit of the length value and the least significant bit of the third of the
three Length octets shall be the least significant bit of the length value.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 30 – 61158-6-17 © IEC:2007

The sender shall have the option of using either the one-octet format or the three-octet format.
For example, the three-octet format may be used to convey a length value of one.

The meaning of the Length octet(s) depends on the type of value being encoded. If the
encoding of the Contents octet(s) is primitive, the Length octet(s) shall contain the number of
octets in the Contents octets. If the encoding of the Contents octets is constructed, the Length
octet(s) shall contain the number of the first-level components of the Contents octets.

Figure 4 and Figure 5 depict encoding examples of the Length octet(s).

8 7 6 5 4 3 2 1

(msb) value of the length octet as defined above (lsb)

Figure 4 – Length octet (one-octet format)

first octet 15 second and third octets 1
11111111 (msb) value of the length octets as defined above (lsb)

Figure 5 – Length octets (three-octet format)

5.3.4 Contents octet(s)

The Contents octet(s) shall encode the data value according to the encoding rule defined for
its type.

The Contents octet(s) shall have either of the following two forms: primitive encoding or
constructed encoding.

a) If the Contents octet(s) contain a primitive encoding, they represent an encoding of one
value.

b) If the Contents octet(s) contain a constructed encoding, they represent an enumerated
encoding of more than one value.

5.4 Data type encoding rules

5.4.1 General

5.4.1.1 Boolean

A Boolean value shall be encoded as follows.

a) The Identifier octet and the Length octet(s) shall not be present.
b) The Contents octet(s) component always consists of one octet. If the Boolean value

equals FALSE, all bits of the octet are 0. If the Boolean value equals TRUE, the octet can
contain any combination of bits other than the encoding for FALSE.

5.4.1.2 Integer

An Integer value shall be encoded as follows.

a) The Identifier octet shall not be present.
b) The Length octet(s) shall not be present if the size of the Integer value is invariable. An

integer with invariable size is created by constraining the possible value. The Length
octet(s) shall be present if the size of the Integer value is variable.

c) The Contents octet(s) shall contain the two’s complement binary number equal to the
Integer value. The most significant eight bits of the Integer value are encoded in bit 8 to
bit 1 of the first octet, the next eight bits in bit 8 to bit 1 of the next octet and so on. If the
values of an Integer type are restricted to negative and non-negative numbers, bit 8 of the

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 31 –

first octet gives the sign of the value if the values are restricted to non-negative numbers
only, no sign bit is needed.

5.4.1.3 Unsigned value

An Unsigned Value shall be encoded as follows.

a) The Identifier octet shall not be present.
b) The Length octet(s) shall not be present if the size of the Unsigned Value is invariable.

The length of an Unsigned Value with invariable depends on the specified range of the
value. The Length octet(s) shall be present if the size of the Unsigned Value is variable.

c) The Contents octet(s) shall be a binary number equal to the Unsigned Value, and consist
of bits 8 to 1 of the first octet, followed by bits 8 to 1 of the second octet, followed by bits
8 to 1 of each octet in turn, up to and including the last octet of the Contents octet(s).

5.4.1.4 Floating Point

A Floating Point value shall be encoded as follows.

a) The Identifier octet shall not be present.
b) The Length octet(s) shall not be present.
c) The Contents octet(s) shall contain floating point values defined in conformance with the

IEC 60559. The sign is encoded by using bit 8 of the first octet. It is followed by the
exponent starting from bit 7 of the first octet, and then the mantissa starting from bit 7 of
the second octet for Floating32 and from bit 4 of the second octet for Floating64.

5.4.1.5 Bit string

A Bit String value shall be encoded as follows.

a) The Identifier octet shall not be present.
b) The Length octet(s) shall not be present if the size of the Bit String value is invariable. A

Bit String with invariable size is created by applying a size constraint containing only one
value on the Bit String type. The Length octet(s) shall be present if the size of the Bit
String value is variable.

c) The Contents octet(s) comprise as many octets as necessary to contain all bits of the
actual value: N_octets = (N_Bits-1) div 8 + 1. The Bit String value commencing with the
first bit and proceeding to the trailing bit shall be placed in bits 8 to 1 of the first octet,
followed by bits 8 to 1 of the second octet and so on. If the number of bits is not a multiple
of 8, there are so-called unused bits, which are located in the least significant bits of the
last octet. The value of the unused bits may be zero (0) or one (1) and carry no meaning.

5.4.1.6 Octet string

An octet String value shall be encoded as follows.

a) The Identifier octet shall not be present.
b) The Length octet(s) shall not be present if the size of the octet String value is invariable.

An octet String with invariable size is created by applying a size constraint containing only
one value on the octet String type. The Length octet(s) shall be present if the size of the
octet String value is variable.

c) The Contents octet(s) shall be equal in value to the octets in the data value.

5.4.1.7 Visible string

A Visible String value shall be encoded as follows.

a) The Identifier octet shall not be present.
b) The Length octet(s) shall not be present if the size of the Visible String value is invariable.

A Visible String with invariable size is created by applying a size constraint containing

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 32 – 61158-6-17 © IEC:2007

only one value on the Visible String type. The Length octet(s) shall be present if the size
of the Visible String value is variable.

c) The Contents octet(s) shall be equal in value to the octets in the data value.

5.4.1.8 UNICODE string (ISO 10646 string)

A UNICODE String value shall be encoded as follows.

a) The Identifier octet shall not be present.
b) The Length octet(s) shall indicate the number of octets in the Contents octet(s) as a

binary number.
c) Each ISO 10646 character shall be placed in two octets in the Contents octet(s), with the

high-order octet placed in the first octet and the low-order octet in the subsequent octet,
and with the most significant bit of an octet of the data value aligned with the most
significant bit of an octet of the Contents octet(s).

5.4.1.9 Binary time

A Binary Time value shall be encoded as follows.

a) The Identifier octet shall not be present
b) The Length octet(s) shall not be present.
c) The Contents octet(s) shall be a binary number equal to the Binary Time value and

consisting of bits 8 to 1 of the first octet, followed by bits 8 to 1 of the second octet,
followed by bits 8 to 1 of each octet in turn, up to and including the last octet of the
Contents octet(s).

5.4.1.10 BCD type
a) A BCD value shall be encoded as an Unsigned8 value.
b) A BCD value shall be placed in bits 4 to 1 of the Contents octet of an Unsigned8 value.

The values of the bits 8 to 5 shall be zero (0).

5.4.1.11 Compact Boolean array

A Compact Boolean Array value shall be encoded as a Bit String value.

5.4.1.12 Compact BCD array type
a) A Compact BCD Array value shall be encoded as a primitive type.
b) The Identifier octet shall not be present.
c) The Length octet(s) shall indicate the number of octets in the array as a binary number.
d) If the number of BCD values is zero, there shall be no subsequent octets, and the Length

octet(s) shall be zero.
e) The first BCD value shall be placed as a binary number in bits 8 to 5 of the first Contents

octet(s), and the second BCD value shall be placed in bits 4 to 1 of the first Contents
octet(s). This will be repeated for the remaining BCD values and Contents octet(s) up to
and including the last octet of the Contents octet(s). The values of any unused bits in the
last Contents octet shall be set to 1.

5.4.1.13 SEQUENCE type

A value of a SEQUENCE type shall be encoded as follows.

a) The Identifier octet shall not be present.
b) The Length octet(s) shall be present and specify the number of the first level components

of the Contents octet(s). However, for the first Keyword “SEQUENCE” of FalArPDU, this
length shall not be encoded.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 33 –

c) The Contents octet(s) shall consist of the encodings of all the element types in the same
order as they are specified in the ASN.1 description of the SEQUENCE type.

5.4.1.14 SEQUENCE OF type

A value of a SEQUENCE OF type shall be encoded as follows.

a) The Identifier octet shall not be present.
b) The Length octet(s) shall be present and specify the number of the first-level components

of the Contents octet(s).
c) The Contents octet(s) shall consist of the encodings of all the element types in the same

order as they are specified in the ASN.1 description of the SEQUENCE OF type.

5.4.1.15 CHOICE type

A value of a CHOICE type shall be encoded as follows.

a) The Identifier octet shall not be present.
b) The Length octet(s) shall not be present.
c) The Contents octet(s) shall consist of the encoding of the selected type of the alternative

type list.

5.4.1.16 Null

A value of a NULL type shall be encoded as follows.

a) The Identifier octet shall not be present.
b) The Length octet(s) shall not be present.
c) The Contents octet(s) shall not be present.

5.4.1.17 Tagged type

A value of a Tagged type shall be encoded as follows.

a) The Identifier octet shall only be present if the tagged type is a part of an alternative type
list in a CHOICE construct.

b) The Length octet(s) shall not be present.
c) The Contents octet(s) shall consist of the encoding of the type that was tagged.

5.4.1.18 IMPLICIT type

A value of an IMPLICIT type shall be encoded as follows.

a) The Identifier octet shall not be present.
b) The Length octet(s) shall not be present.
c) The Contents octet(s) shall consist of the encoding of the type being referenced by the

IMPLICIT construct, except for the case when the referenced type is a SEQUENCE type.
In this case, the Contents octet(s) consist only of the Contents octet(s) of the referenced
SEQUENCE type, and the Length octet(s) of this SEQUENCE type shall not be present.

5.4.1.19 OPTIONAL and DEFAULT types

A value of an OPTIONAL or DEFAULT type shall be encoded as follows.

a) The Identifier octet shall not be present.
b) The Length octet(s) shall be present. If there is no value for this type, the Length octet(s)

contain the value 0.
c) The Contents octet(s) shall consist of the encoding of the referenced type if there is a

value for this type, otherwise no Contents octets exist.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 34 – 61158-6-17 © IEC:2007

5.4.1.20 ANY type

An ANY type is used for the definition of complex types, whose structure is described
informally rather than in ASN.1.

A value of an ANY type shall be encoded as follows:

a) The Identifier octet shall not be present.
b) The Length octet(s) shall not be present.
c) The Contents octets shall consist of the encoding of all implicit types that constitute the

ANY type.

6 FAL protocol state machines structure

This subclause specifies protocol machines of the FAL and the Interface between them.

NOTE The state machines specified in this clause and ARPMs defined in the following clauses only define the
protocol-related events for each. It is a local matter to handle other events.

The behaviour of the FAL is described by three integrated protocol machines. The three kinds
of protocol machines are: FAL Service Protocol Machines (FSPMs), the Application
Relationship Protocol Machines (ARPMs), and the data-link layer Mapping Protocol Machines
(DMPMs). Specific protocol machines are defined for different AREP types. The relationships
among these protocol machines as well as primitives exchanged among them are depicted in
Figure 6.

Figure 6 – Relationships among protocol machines and adjacent layers

The FSPM is responsible for the following activities:

a) to accept service primitives from the FAL service user and convert them into FAL internal
primitives;

DMPM

FSPM

#1 ARPM

#n ARPM

AP Cortext

Data-link layer

DL Req/Rsp Primitives DL Ind/Cnf Primitives

FAL Service Req/Rsp Primitives FAL Service Ind/Cnf Primitives

ARPM Req/Rsp Primitives ARPM Ind/Cnf Primitives

FSPM Req/Rsp Primitives FSPM Ind/Cnf Primitives

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 35 –

b) to select an appropriate ARPM state machine based on the AREP Identifier parameter
supplied by the AP-Context and send FAL internal primitives to the selected ARPM;

c) to accept FAL internal primitives from the ARPM and convert them into service primitives
for the AP-Context;

d) to deliver the FAL service primitives to the AP-Context based on the AREP Identifier
parameter associated with the primitives.

The ARPM is responsible for the following activities:

a) to accept FAL internal primitives from the FSPM and create and send other FAL internal
primitives to either the FSPM or the DMPM, based on the AREP and primitive types;

b) to accept FAL internal primitives from the DMPM and send them to the FSPM in a
converted form for the FSPM;

c) if the primitives are for the Establish or Abort service, it shall try to establish or release the
specified AR.

The DMPM describes the mapping between the FAL and the DLL. It is common to all the
AREP types and does not have any state changes. The DMPM is responsible for the following
activities:

a) to accept FAL internal primitives from the ARPM, prepare DLL service primitives, and
send them to the DLL;

b) to receive DLL indication or confirmation primitives from the DLL and send them to the
ARPM in a converted form for the ARPM.

7 AP-context state machine

There is no AP-Context State Machine defined for this Protocol.

8 FAL service protocol machines (FSPMs)

8.1 General

There are FAL Service Protocol Machines as follows:

• Variable ASE Protocol Machine (VARM)

• Event ASE Protocol Machine (EVTM)

• Load Region ASE Protocol Machine (LDRM)

• Function Invocation ASE Protocol Machine (FNIM)

• Time ASE Protocol Machine (TIMM)

• Network Management ASE Protocol Machine (NWMM)

8.2 Common parameters of the primitives

Many services have the following parameters. Instead of defining them with each service, the
following common definitions are provided.

AREP
This parameter contains sufficient information to identify the AREP to be used to convey the
service. This parameter may use a key attribute of the AREP to identify the application
relationship. When an AREP supports multiple contexts (established using the Initiate service)
at the same time, the AREP parameter is extended to identify the context as well as the AREP.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 36 – 61158-6-17 © IEC:2007

InvokeID
This parameter identifies this invocation of the service. It is used to associate a service
request with its response. Therefore, no two outstanding service invocations can be identified
by the same InvokeID value.

Error Info
This parameter provides error information for service errors. It is returned in confirmed service
primitives and response primitives.

8.3 Variable ASE protocol machine (VARM)

8.3.1 Primitive definitions

8.3.1.1 Primitives exchanged

Table 3 shows the service primitives, including their associated parameters exchanged
between the FAL user and the VARM.

Table 3 – Primitives exchanged between FAL user and VARM

Primitive
name Source Associated

parameters Functions

Read.req FAL
User

VariableSpecifier

This primitive is used to read values from remote
variables.

Write.req FAL
User

VariableSpecifier

This primitive is used to write values to remote
variables.

InfReport.req FAL
User

VariableSpecifier,
Value,
RemoteArep

This primitive is used to publish variables.

Read.rsp FAL
User

VariableSpecifier,
Value,
ErrorInfo

This primitive is used to convey values of variables
requested.

Write.rsp FAL
User

VariableSpecifier,
ErrorInfo

This primitive is used to report result of writing
requested.

Read.ind VARM VariableSpecifier This primitive is used to convey a read request.
Write.ind VARM VariableSpecifier

Value
This primitive is used to convey a write request.

InfReport.ind VARM VariableSpecifier,
Value

This primitive is used to report values of variables
published.

Read.cnf VARM VariableSpecifier,
Value
ErrorInfo

This primitive is used to convey values of variables
requested and result of reading.

Write.cnf VARM VariableSpecifier,
ErrorInfo

This primitive is used to report result of writing
requested.

8.3.1.2 Parameters of primitives

The parameters used with the primitives exchanged between the FAL user and the VARM are
listed in Table 4.

Table 4 – Parameters used with primitives exchanged FAL user and VARM

Parameter name Description
VariableSpecifier This parameter specifies a variable or a variable list.
RemoteArep This parameter specifies a remote AREP to which APDU is to be transferred.
Value This parameter contains the value of variable to be read/write.
ErrorInfo This parameter provides error information for service errors.

8.3.2 State machine

8.3.2.1 General

The VARM State Machine has only one possible state: ACTIVE.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 37 –

Figure 7 – State transition diagram of VARM

8.3.2.2 State tables

The VARM state machine is described in Figure 7, and in Table 5 and Table 6.

Table 5 – VARM state table – Sender transitions

Current
state

Event or condition

=> action
Next state

S1 ACTIVE Read.req
=>

ArepID := GetArep(VariableSpecifier)
SelectArep(ArepID, “PTC-AR”),
CS_req{

user_data := Read-RequestPDU
}

ACTIVE

S2 ACTIVE Write.req
=>

ArepID := GetArep(VariableSpecifier)
SelectArep(ArepID, “PTC-AR”),
CS_req{

user_data := Write-RequestPDU
}

ACTIVE

S3 ACTIVE InfReport.req
=>

SelectArep(RemoteArep, “MSU-AR”),
UCS_req{

user_data := InformationReport-RequestPDU
}

ACTIVE

S4 ACTIVE Read.rsp
=>

SelectArep(ArepID, “PTC-AR”),
CS_rsp{

user_data := Read-ResponsePDU
}

ACTIVE

S5 ACTIVE Write.rsp
=>

SelectArep(ArepID, “PTC-AR”),
CS_rsp{

user_data := Write-ResponsePDU
}

ACTIVE

ACTIVE All transitions

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 38 – 61158-6-17 © IEC:2007

Table 6 – VARM state table – Receiver transitions

Current
state

Event or condition

=> action
Next state

R1 ACTIVE CS_ind
&& PDU_Type = Read_RequestPDU
=>

Read.ind{
ArepID := arep_id
Data := user_data

}

ACTIVE

R2 ACTIVE CS_ind
&& PDU_Type = Write_RequestPDU
=>

Write.ind{
ArepID := arep_id
Data := user_data,

}

ACTIVE

R3 ACTIVE CS_ind
&& PDU_Type = Read_ResponsePDU
&& GetErrorInfo() = “success”
=>

Read.cnf(+){
Data := user_data

}

ACTIVE

R4 ACTIVE CS_ind
&& PDU_Type = Read_ResponsePDU
&& GetErrorInfo() <> “success”
=>

Read.cnf(-){
ErrorInfo := GetErrorInfo()

}

ACTIVE

R5 ACTIVE CS_ind
&& PDU_Type =Write_ResponsePDU
&& GetErrorInfo() = “success”
=>

Write.cnf(+){
Data := user_data

}

ACTIVE

R6 ACTIVE CS_ind
&& PDU_Type = Write_ResponsePDU
&& GetErrorInfo() <> “success”
=>

Write.cnf(-){
ErrorInfo := GetErrorInfo()

}

ACTIVE

R7 ACTIVE UCS_ind
&& PDU_Type = InformationReport-RequestPDU
=>

InfReport.ind{
Data := user_data

}

ACTIVE

R8 ACTIVE CS_cnf
&& Status = “success”
=>

 (no actions taken)

ACTIVE

R9 ACTIVE CS_cnf
&& Status <> “success”
&& GetService(InvokeID) = “Read”
=>

Read.cnf(-){
ErrorInfo := Status

}

ACTIVE

R10 ACTIVE CS_cnf
&& Status <> “success”
&& GetService(InvokeID) = “Write”
=>

Write.cnf(-){
ErrorInfo := Status

}

ACTIVE

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 39 –

8.3.2.3 Functions

Table 7 lists the functions used by the VARM, their arguments and their descriptions.

Table 7 – Functions used by the VARM

Function name Parameter Description
SelectArep ArepID,

ARtype
Looks for the AREP entry that is specified by the ArepID and
AR type

GetArep VariableSpecifier Look for the ArepID based on the specified VariableSpecifier.
GetErrorInfo Gets error information from the APDU
GetService InvokeID Gets service name from the InvokeID

8.4 Event ASE protocol machine (EVTM)

8.4.1 Primitive definitions

8.4.1.1 Primitives exchanged

Table 8 shows the service primitives, including their associated parameters exchanged
between the FAL user and the EVTM.

Table 8 – Primitives exchanged between FAL user and EVTM

Primitive name Source Associated parameters Functions
Notification.req FAL

User
AREP
NotifierID
Sequence Number
ListOfEventMessages

This primitive is used to request publishing of
event messages

EventRecovery.req FAL
User

AREP
NotifierID
SequenceNumber

This primitive is used to request retransmission
of event notification

Notification.ind EVTM AREP
NotifierID
SequenceNumber
List of Event Messages

This primitive is used to inform event notification.

EventRecovery.ind EVTM AREP
NotifierID
SequenceNumber

This primitive is used to inform request of
retransmission of event notification

8.4.1.2 Parameters of primitives
The parameters used with the primitives exchanged between the FAL user and the EVTM are listed
in Table 9.

Table 9 – Parameters used with primitives exchanged FAL user and EVTM

Parameter name Description
NotifierID This conditional parameter identifies the notifier issuing the event notification. It is

present if the AP has more than one notifier defined for it
SequenceNumber This optional parameter is the sequence number for the event notification. It may be

used for notification recovery purposes
NotificationTime This optional parameter is the time of the event notification
ListOfEventMessages This parameter contains the list of event messages that are to be reported. It may

contain messages from one or more event objects, and each object contains the same
set of parameters

8.4.2 State machine

8.4.2.1 General

The EVTM State Machine has only one possible state: ACTIVE.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 40 – 61158-6-17 © IEC:2007

Figure 8 – State transition diagram of EVTM

8.4.2.2 State tables

The EVTM state machine is described in Figure 8, and in Table 10 and Table 11.

Table 10 – EVTM state table – Sender transitions

Current
state

Event or condition

=> action
Next state

S1 ACTIVE Notification.req
=>

SelectArep(RemoteArep, “MTU-AR”),
UCS_req{

user_data := Event-NotificationPDU
}

ACTIVE

S2 ACTIVE EventRecovery.req
=>

SelectArep(RemoteArep, “PTU-AR”),
UCS_req{

arep := SelectArep(CalledAREP, “PTU-AR”),
user_data := EventRecovery-RequestPDU

}

ACTIVE

Table 11 – EVTM state table – Receiver transitions

Current
state

Event or condition

=> action
Next state

R1 ACTIVE UCS_ind
&& PDU_Type = Event_NotifiationPDU
=>

Notification.ind{
Data := user_data

}

ACTIVE

R2 ACTIVE UCS_ind
&& PDU_Type = EventRecovery-RequestPDU
=>

EventRecovery.ind {
Data := user_data

}

ACTIVE

8.4.2.3 Functions

Table 12 lists the function used by the EVTM, their arguments, and their description.

Table 12 – Functions used by the EVTM

Function name Parameter Description
SelectArep ArepID,

ARtype
Looks for the AREP entry that is specified by the ArepID and
AR type

ACTIVE All transitions

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 41 –

8.5 Load region ASE protocol machine (LDRM)

8.5.1 Primitive definitions

8.5.1.1 Primitives exchanged

Table 13 shows the service primitives, including their associated parameters exchanged
between the FAL user and the LDRM.

Table 13 – Primitives exchanged between FAL user and LDRM

Primitive
name Source Associated

parameters Functions

Download.req FAL
User

AREP
InvokeID
LoadRegion
LoadData

This primitive is used to request download data to
the region

Upload.req FAL
User

AREP
InvokeID
LoadRegion

This primitive is used to request upload data from
the region

Download.rsp FAL
User

AREP
InvokeID
Error Info

This primitive is used to report result of download
requested

Upload.rsp FAL
User

AREP
InvokeID
LoadData
ErrorInfo

This primitive is used to convey data to be uploaded

Download.ind LDRM AREP
InvokeID
LoadRegion
LoadData

This primitive is used to convey data downloaded

Upload.ind LDRM AREP
InvokeID
Load region

This primitive is used to convey an upload request

Download.cnf LDRM AREP
InvokeID
ErrorInfo

This primitive is used to convey a result of download

Upload.cnf LDRM AREP
InvokeID
LoadData
ErrorInfo

This primitive is used to convey data uploaded

8.5.1.2 Parameters of primitives

The parameters used with the primitives exchanged between the FAL user and the LDRM are
listed in Table 14.

Table 14 – Parameters used with primitives exchanged FAL user and LDRM

Parameter name Description
LoadRegion This parameter specifies the region from/to which the image is to be loaded
LoadData This parameter contains the data to be loaded
ErrorInfo This parameter provides error information for service errors

8.5.2 State machine

8.5.2.1 General

The LDRM State Machine has only one possible state: ACTIVE.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 42 – 61158-6-17 © IEC:2007

Figure 9 – State transition diagram of LDRM

8.5.2.2 State tables

The LDRM state machine is described in Figure 9, and in Table 15 and Table 16.

Table 15 – LDRM state table – Sender transitions

Current
state

Event or condition

=> action
Next state

S1 ACTIVE Download.req
=>

SelectArep(RemoteArep, “PTC-AR”),
CS_req{

user_data := DownLoad-RequestPDU
}

ACTIVE

S2 ACTIVE Upload.req
=>

SelectArep(RemoteArep, “PTC-AR”),
CS_req{

user_data := UpLoad-RequestPDU
}

ACTIVE

S3 ACTIVE Download.rsp
=>

SelectArep(ArepID, “PTC-AR”),
CS_rsp{

arep := SelectArep(CallingAREP, “PTC-AR”),
user_data := DownLoad-ResponsePDU

}

ACTIVE

S4 ACTIVE Upload.rsp
=>

SelectArep(ArepID, “PTC-AR”),
CS_rsp{

arep := SelectArep(CallingAREP, “PTC-AR”),
user_data := UpLoad-ResponsePDU

}

ACTIVE

ACTIVE All transitions

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 43 –

Table 16 – LDRM state table – Receiver transitions

Current
state

Event or condition

=> action
Next state

R1 ACTIVE CS_ind
&& PDU_Type = DownLoad-RequestPDU
=>

Download.ind {
ArepID := arep_id
Data := user_data

}

ACTIVE

R2 ACTIVE CS_ind
&& PDU_Type = UpLoad-RequestPDU
=>

Upload.ind {
ArepID := arep_id
Data := user_data

}

ACTIVE

R3 ACTIVE CS_ind
&& PDU_Type = DownLoad-ResponsePDU
=>

Download.cnf(+) {
Data := user_data

}

ACTIVE

R4 ACTIVE CS_ind
&& PDU_Type = UpLoad-ResponsePDU
=>

Upload.cnf(+) {
Data := user_data

}

ACTIVE

R5 ACTIVE CS_cnf
&& Status <> “success”
&& GetService(InvokeID) = “Download”
=>

Download.cnf(-) {
ErrorInfo := Status

}

ACTIVE

R6 ACTIVE CS_cnf
&& Status <> “success”
&& GetService(InvokeID) = “Upload”
=>

Upload.cnf(-) {
ErrorInfo := Status

}

ACTIVE

8.5.2.3 Functions

Table 17 lists the functions used by the LDRM, their arguments, and their descriptions.

Table 17 – Functions used by the LDRM

Function name Parameter Description
SelectArep ArepID,

ARtype
Looks for the AREP entry that is specified by the ArepID
and AR type

GetErrorInfo Gets error information from the APDU.
GetService InvokeID Gets service name from the InvokeID.

8.6 Function invocation ASE protocol machine (FNIM)

8.6.1 Primitive definitions

8.6.1.1 Primitives exchanged

Table 18 shows the service primitives, including their associated parameters exchanged
between the FAL user and the FNIM.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 44 – 61158-6-17 © IEC:2007

Table 18 – Primitives exchanged between FAL user and FNIM

Primitive
name Source Associated

parameters Functions

Start.req FAL
User

AREP
InvokeID
FunctionID

This primitive is used to request start of the function

Stop.req FAL
User

AREP
InvokeID
FunctionID

This primitive is used to request stop of the
function.

Resume.req FAL
User

AREP
InvokeID
FunctionID

This primitive is used to request resume of the
function.

Start.rsp FAL
User

AREP
InvokeID
Error Info

This primitive is used to report result of start
requested.

Stop.rsp FAL
User

AREP
InvokeID
Error Info

This primitive is used to report result of stop
requested.

Resume.rsp FAL
User

AREP
InvokeID
Error Info

This primitive is used to report result of resume
requested.

Start.ind FNIM AREP
InvokeID
FunctionID

This primitive is used to convey a start request.

Stop.ind FNIM AREP
InvokeID
FunctionID

This primitive is used to convey a stop request.

Resume.ind FNIM AREP
InvokeID
FunctionID

This primitive is used to convey a resume request.

Start.cnf FNIM AREP
InvokeID
Error Info

This primitive is used to convey a result of start.

Stop.cnf FNIM AREP
InvokeID
Error Info

This primitive is used to convey a result of stop.

Resume.cnf FNIM AREP
InvokeID
Error Info

This primitive is used to convey a result of resume.

8.6.1.2 Parameters of primitives

The parameter used with the primitives exchanged between the FAL user and the FNIM is
listed in Table 19.

Table 19 – Parameters used with primitives exchanged FAL user and FNIM

Parameter name Description
FunctionID This parameter specifies one of the key attributes of the function invocation object

8.6.2 State machine

8.6.2.1 General

The FNIM State Machine has only one possible state: ACTIVE.

Figure 10 – State transition diagram of FNIM

ACTIVE All transitions

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 45 –

8.6.2.2 State tables

The FNIM state machine is described in Figure 10, and in Table 20 and Table 21.

Table 20 – FNIM state table – Sender transitions

Current
state

Event or condition

=> action
Next state

S1 ACTIVE Start.req
=>

SelectArep(RemoteArep, “PTC-AR”),
CS_req{

user_data := Start-RequestPDU
}

ACTIVE

S2 ACTIVE Stop.req.req
=>

SelectArep(RemoteArep, “PTC-AR”),
CS_req{

user_data := Stop-RequestPDU
}

ACTIVE

S3 ACTIVE Resume.req
=>

SelectArep(RemoteArep, “PTC-AR”),
CS_req{

user_data := Resume-ResponsePDU
}

ACTIVE

S4 ACTIVE Start.rsp
=>

SelectArep(ArepID, “PTC-AR”),
CS_rsp{

user_data := Start-ResponsePDU
}

ACTIVE

S5 ACTIVE Stop.rsp
=>

SelectArep(ArepID, “PTC-AR”),
CS_rsp{

user_data := Stop-ResponsePDU
}

ACTIVE

S6 ACTIVE Resume.rsp
=>

SelectArep(ArepID, “PTC-AR”),
CS_rsp{

user_data := Resume-ResponsePDU
}

ACTIVE

Table 21 – FNIM state table – Receiver transitions

Current
state

Event or condition

=> action
Next state

R1 ACTIVE CS_ind
&& PDU_Type = Start-RequestPDU
=>

Start.ind {
Data := user_data

}

ACTIVE

R2 ACTIVE CS_ind
&& PDU_Type = Stop-RequestPDU
=>

Stop.ind {
Data := user_data

}

ACTIVE

R3 ACTIVE CS_ind
&& PDU_Type = Resume-RequestPDU
=>

Resume.ind {
Data := user_data

}

ACTIVE

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 46 – 61158-6-17 © IEC:2007

Current
state

Event or condition

=> action
Next state

R4 ACTIVE CS_ind
&& PDU_Type = Start-ResponsePDU
=>

Start.cnf(+) {
Data := user_data

}

ACTIVE

R5 ACTIVE CS_ind
&& PDU_Type = Start-ResponsePDU
&& GetErrorInfo() <> “success”
=>

Start.cnf(-){
ErrorInfo := GetErrorInfo()

}

ACTIVE

R6 ACTIVE CS_ind
&& PDU_Type = Stop-ResponsePDU
=>

Stop.cnf(+) {
Data := user_data

}

ACTIVE

R7 ACTIVE CS_ind
&& PDU_Type = Stop-ResponsePDU
&& GetErrorInfo() <> “success”
=>

Stop.cnf(-){
ErrorInfo := GetErrorInfo()

}

ACTIVE

R8 ACTIVE CS_ind
&& PDU_Type = Resume-ResponsePDU
=>

Resume.cnf(+) {
Data := user_data

}

ACTIVE

R9 ACTIVE CS_ind
&& PDU_Type = Resume-ResponsePDU
&& GetErrorInfo() <> “success”
=>

Resume.cnf(-){
ErrorInfo := GetErrorInfo()

}

ACTIVE

R10 ACTIVE CS_cnf
&& Status = “success”
=>

 (no actions taken)

ACTIVE

R11 ACTIVE CS_cnf
&& Status <> “success”
&& GetService(InvokeID) = “Start”
=>

Start.cnf(-) {
ErrorInfo := Status

}

ACTIVE

R12 ACTIVE CS_cnf
&& Status <> “success”
&& GetService(InvokeID) = “Stop”
=>

Stop.cnf(-) {
ErrorInfo := Status

}

ACTIVE

R13 ACTIVE CS_cnf
&& Status <> “success”
&& GetService(InvokeID) = “Resume”
=>

Resume.cnf(-) {
ErrorInfo := Status

}

ACTIVE

8.6.2.3 Functions

Table 22 lists the functions used by the FNIM, their arguments, and their descriptions.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 47 –

Table 22 – Functions used by the FNIM

Function name Parameter Description
SelectArep AREPid,

ARtype
Looks for the AREP entry that is specified by the AREPid and
AR type

GetErrorInfo Gets error information from the APDU
GetService InvokeID Gets service name from the InvokeID

8.7 Time ASE protocol machine (TIMM)

8.7.1 Primitive definitions

8.7.1.1 Primitives exchanged

Table 23 shows the service primitives, including their associated parameters exchanged
between the FAL user and the TIMM.

Table 23 – Primitives exchanged between FAL user and TIMM

Primitive
name Source Associated

parameters Functions

GetTime.req FAL
User

AREP
InvokeID

This primitive is used to request network time

SetTim.req FAL
User

AREP
InvokeID
NetworkTime

This primitive is used to request setting of time to
the network.

SetTim.ind TIMM AREP
InvokeID
Network-time

This primitive is used to report setting of network
time.

Tick.ind TIMM Tick This primitive is used to report periodical trigger
synchronized to network time.

GetTim.cnf TIMM AREP
InvokeID
NetworkTime
ErrorInfo

This primitive is used to convey a result of getting of
network time.

SetTim.cnf TIMM AREP
InvokeID
ErrorInfo

This primitive is used to convey a result of setting of
network time.

8.7.1.2 Parameters of primitives

The parameters used with the primitives exchanged between the FAL user and the TIMM are
listed in Table 24.

Table 24 – Parameters used with primitives exchanged FAL user and TIMM

Parameter name Description
NetworkTime This parameter is the value of the network time
ErrorInfo This parameter provides error information for service errors.
Tick This parameter indicates tick timing.

8.7.2 State machine

8.7.2.1 General

The TIMM State Machine has four possible states. The defined states and their descriptions
are shown in Table 25 and Figure 11.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 48 – 61158-6-17 © IEC:2007

Table 25 – TIMM states

State Description

TIM_MST TIMM is acting as network time master

DOM_MST TIMM is acting as domain time master.

SLAVE TIMM is synchronized with domain time master.

IDLE TIMM is not synchronized with network time.

Figure 11 – State transition diagram of TIMM

8.7.2.2 State tables

The TIMM state machine is described in Figure 11, and in Table 26 and Table 27.

IDLE

SLAVE

DOM-
MST

TIM-
MST

S1, S3

R1

S2, S3, S4
R2, R3, R4

R5

R8

R9

R12

S2, S3
R2, R10

 S2, S3
 S5, S6
R2, R6, R7

R11

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 49 –

Table 26 – TIMM state table – Sender transitions

Current
state

Event or condition

=> action
Next state

S1 IDLE GetTime.req
=>

GetTime.cnf {
Error info := “not synchronized”

}

IDLE

S2 SLAVE
DOM_MST
TIM_MST

GetTime.req
=>

GetTime.cnf {
NetworkTime := GetLocalTime()

}

SAME

S3 ANY SetTim.req
=>

SelectArep(“NET”, “MTU-AR”),
UCS_req {

user_data := SetTime-RequestPDU
}

SAME

S4 SLAVE CheckTimer(Timer1) = “Expired”
=>

SelectArep (“DOM-MST”, “PTC-AR”),
CS_req {

user_data := Time-RequestPDU
},
StartTimer(Timer1)

SLAVE

S5 DOM-MST CheckTimer(Timer2) = “Expired”
=>

SelectArep(“DOM”, “MTU-AR”),
UCS_req {

user_data := TimeDistribute-RequestPDU
},
StartTimer(Timer2)

DOM-MST

S6 DOM-MST CheckTimer(Timer3) = “Expired”
=>

SelectArep(“TIM-MST”, “PTC-AR”),
CS_req {

user_data := Time-RequestPDU
},
StartTimer(Timer3)

DOM-MST

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 50 – 61158-6-17 © IEC:2007

Table 27 – TIMM state table – Receiver transitions

Current
state

Event or condition

=> action
Next state

R1 IDLE UCS_ind
&& PDU_Type = TimeDistribute-RequestPDU
=>

SLAVE

R2 SLAVE
DOM_MST
TIM_MST

CheckTimer(Tick) = “Expired”
=>

Tick.ind {}
StartTimer(Tick)

SAME

R3 SLAVE UCS_ind
&& PDU_Type = TimeDistribute-RequestPDU
=>

UpdateLocalTime(DelayFactor)

SLAVE

R4 SLAVE CS_ind
&& PDU_Type = Time-ResponsePDU
=>

DelayFactor = CalcurateDelay()

SLAVE

R5 SLAVE CheckNW() == DOM-MST
=>

(no actions taken)

DOM-MST

R6 DOM-MST CS_ind
&& PDU_Type = Time-RequestPDU
=>

SelectArep(CallingAREP, “PTC-AR”),
CS_rsp {

user_data := Time-ResponsePDU
}

DOM-MST

R7 DOM-MST CS_ind
&& PDU_Type = Time-ResponsePDU
=>

DelayFactor = CalcurateDelay(),
UpdateLocalTime(DelayFactor)

DOM-MST

R8 DOM-MST CheckNW() == SLAVE
=>

(no actions taken)

SLAVE

R9 DOM-MST CheckNW() == TIM-MST
=>

(no actions taken)

TIM-MST

R10 TIM-MST CS_ind
&& PDU_Type = Time-RequestPDU
=>

SelectArep(CallingAREP, “PTC-AR”),
CS_rsp {

user_data := Time-ResponsePDU
}

TIM-MST

R11 TIM-MST CheckNW() == DOM-MST
=>

(no actions taken)

DOM-MST

R12 TIM-MST CheckNW() == SLAVE
=>

(no actions taken)

SLAVE

8.7.2.3 Functions

Table 28 lists the functions used by the TIMM, their arguments, and their descriptions.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 51 –

Table 28 – Functions used by the TIMM

Function name Parameter Description
SelectArep ArepID,

ARtype
Looks for the AREP entry that is specified by the ArepID
and AR type.
The value “DOM” for ArepID specifies all stations of the
domain to which the NWMM belong.
The value “NET” for ArepID specifies all stations of the
network.
The value “DOM-MST” for ArepID specifies the AREP of the
domain time master of the domain to which the NWMM
belong.
The value “TIM-MST” for ArepID specifies the AREP of the
network time master

GetLocalTime Gets local time from the internal clock
UpdateLocalTime DelayFactor Updates local clock with the received time and the delay

factor
CalcurateDelay Calculate the delay factor from received APDU
CheckTimer TimerID Checks status of the specified timer. If the timer has been

expired, the value “Expired” is returned
StartTimer TimerID Starts the timer specified

8.8 Network management ASE protocol machine (NWMM)

8.8.1 Primitive definitions

8.8.1.1 Primitives exchanged

Table 29 shows the service primitives, including their associated parameters exchanged
between the FAL user and the NWMM.

Table 29 – Primitives exchanged between FAL user and NWMM

Primitive
name Source Associated

parameters Functions

GetNW.req FAL
User

InvokeID This primitive is used to request network status

GetSTN.req FAL
User

InvokeID

StationID

This primitive is used to request station status.

NWStatus.ind NWMM NetworkStatus This primitive is used to report changes of network
status.

STNStats.ind NWMM StationID

StationStatus

RouteStatus

This primitive is used to report changes of station
status.

GetNW.cnf NWMM InvokeID

NetworkStatus

This primitive is used to convey network status.

GetSTN.cnf NWMM InvokeID

StationStatus

RouteStatus

This primitive is used to convey station status
requested.

8.8.1.2 Parameters of primitives

The parameters used with the primitives exchanged between the FAL user and the NWMM
are listed in Table 30.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 52 – 61158-6-17 © IEC:2007

Table 30 – Parameters used with primitives exchanged FAL user and NWMM

Parameter name Description
StationID This parameter indicates a station
StationStatus This parameter indicates status of station which is specified in the request primitive.
RouteStatus This parameter indicates status of routes for the station which is specified in the request

primitive.
NetworkStatus This parameter indicates consistency of the primary network and the secondary network.

8.8.2 State machine

8.8.2.1 General

The NWMM State Machine has three possible states. The defined states and their
descriptions are shown in Table 31 and Figure 12.

Table 31 – NWMM states

State Description

MST NWMM as a domain master.

SLAVE NWMM as a slave.

Figure 12 – State transition diagram of NWMM

SLAVE MST
R3

R4

S1, S2, S4
R1, R2

S1, S2, S3
 R1, R2

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 53 –

8.8.2.2 State tables

The NWMM state machine is described in Figure 12, and in Table 32 and Table 33.

Table 32 – NWMM state table – Sender transitions

Current
state

Event or condition

=> action
Next state

S1 ANY GetNW.req
=>

GetNW.cnf{
NetworkStatus := GetNWstatus()

}

SAME

S2 ANY GetSTN.req
=>

GetSTN.cnf{
StationStatus := GetSTNstatus(StationID)
RouteStatus := GetRoutestatus(StationID)

}

SAME

S3 SLAVE CheckTimer(DiagTimer)
=>

SelectArep(“DOM”, “MTU-AR”),
UCS_req{

user_data := InDiag-RequestPDU
},
StartTimer(DiagTimer)

SLAVE

S4 MST CheckTimer(DiagTimer)
=>

SelectArep(“DOM”, “MTU-AR”),
UCS_req{

user_data := InDiag-RequestPDU
}
SelectArep(“NET”, “MTU-AR”)
UCS_req{

user_data := ExDiag-Request PDU
},
StartTimer(DiagTimer)

MST

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 54 – 61158-6-17 © IEC:2007

Table 33 – NWMM state table – Receiver transitions

Current
state

Event or condition

=> action
Next state

R1 ANY UCS_ind
&& (PDU_Type = InDiag-RequestPDU
 || PDU_Type = ExDiag-RequestPDU)

=>

UpdateNWstatus()

CheckNWstatus(NWstatus-table) = “True”
=>

NWStatus.ind{
NetworkStatus := GetNWstatus()

}

(changedSTN := CheckSTNstatus(NWstatus-table)) <> “None”
=>

STNStats.ind {
StationID := changed-station,
StationStatus := GetSTNstatus(StationID)
RouteStatus := GetRouteStatus(StationID)

}

SAME

R2 ANY CheckTimer(AgingTimer) = “Expired”
=>

UpdateNWstatus()

(changedSTN := CheckSTNstatus(NWstatus-table)) <> “None”
=>

STNStats.ind {
StationID := changed-station,
StationStatus := GetSTNstatus(StationID)
RouteStatus := GetRouteStatus(StationID)

},
StartTimer(AgingTimer)

SAME

R3 SLAVE CheckMaster(NWstatus-table) = “True”
=>

(no actions taken)

MST

R4 MST CheckMaster (NWstatus-table) = “False”
=>

(no actions taken)

SLAVE

8.8.2.3 Functions

Table 34 lists the functions used by the NWMM, their arguments, and their descriptions.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 55 –

Table 34 – Functions used by the NWMM

Function name Parameter Description
GetNWstatus NWstatus-table Gets network status from the network status table.
GetSTNstatus NWstatus-

table,StationID
Gets station status of the specified station from the
network status table.

GetRoutestatus NWstatus-table,
StationID

Gets route status to the specified station from the network
status table.

SelectArep ArepID,
ARtype

Looks for the AREP entry that is specified by the ArepID
and AR type.
The value “DOM” for ArepID specifies all stations of the
domain to which the NWMM belongs.
The value “NET” for ArepID specifies all stations of the
network.

CheckTimer TimerID Checks status of the specified timer. If the timer has
expired, the value “Expired” is returned.

StartTimer TimerID Starts the specified timer.
UpdateNWstatus NWstatus-table Updates the network status table according to received

APDU,
If aging time of each entry of the network status table has
expired, then updates the entry as not valid.

CheckNWstatus() NWstatus-table Checks the network status table. If any change of network
status is detected, the value “True” is returned.

CheckSTNstatus() NWstatus-table Checks the network status table. If any change of station
status is detected, the StationID of the detected station is
returned.

CheckMaster NWstatus-table Checks the network status table. If the NWMM of own
station is recognized as master of the domain according
to the predefined rules, the value “True” is returned.

9 Application relationship protocol machines (ARPMs)

9.1 General

This fieldbus has Application Relationship Protocol Machines (ARPMs) for

• point-to-point user-triggered confirmed client/server AREP (PTC-AR);

• point-to-point user-triggered unconfirmed client/server AREP (PTU-AR);

• point-to-point network-scheduled unconfirmed client/server AREP (PSU-AR);

• multipoint user-triggered unconfirmed publisher/subscriber AREP (MTU-AR);

• multipoint network-scheduled unconfirmed publisher/subscriber AREP (MSU-AR).

9.2 Primitive definitions

9.2.1 Primitives exchanged

Table 35 lists the primitives, including their associated parameters exchanged between the FSPM
and the ARPM.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 56 – 61158-6-17 © IEC:2007

Table 35 – Primitives exchanged between FSPM and ARPM

Primitive
name Source Associated parameters Functions

EST_req FSPM Remote_dlsap_address This primitive is used to request
establishment of the AR

ABT_req FSPM Reason_code This primitive is used to request abort of the
AR.

CS_req FSPM Destination_dlsap_address,
InvokeID,
User_data,

This primitive is used to request sending of
the ConfirmedSend-CommandPDU.

UCS_req FSPM Remote_dlsap_address,
User_data

This primitive is used to request sending of
the UnconfirmedSend-CommandPDU.

CS_rsp FSPM Source_dlsap_address,
User_data

This primitive is used to request sending of
the ConfirmedSend-ResponsePDU.

CS_ind ARPM Source_dlsap_address,
InvokeID,
User_data

This primitive is used to report the received
ConfirmedSend-CommandPDU.

UCS_ind ARPM Remote_dlsap_address,
InvokeID,
User_data

This primitive is used to report the received
UnconfirmedSend-CommandPDU.

EST_cnf ARPM InvokeID,
Result,

This primitive is used to convey a result of
AR establishment.

CS_cnf ARPM InvokeID,
Result,

This primitive is used to convey a result of
confirmed sending

9.2.2 Parameters of primitives

The parameters used with the primitives exchanged between the FSPM and the ARPM are
listed in Table 36.

Table 36 – Parameters used with primitives exchanged FSPM user and ARPM

Parameter name Description
InvokeID This parameter is locally used and defined by the user to identify the request
Remote_dlsap_address This parameter contains the destination DLSAP-address in the request and the source

DLSAP-address in the indication.
Destination_dlsap_address This parameter contains the Destination DLSAP-address.
Source_dlsap_address This parameter contains the Source DLSAP-address.
User_data This parameter contains the service dependent body for the APDU.
Result This parameter indicates that the service request succeeded or failed.
Reason_Code This parameter indicates the reason for the Abort

9.3 State machine

9.3.1 Point-to-point user-triggered confirmed client/server ARPM (PTC-ARPM)

9.3.1.1 General

The PTC-ARPM State Machine has two possible states. The defined states and their
descriptions are shown in Table 37 and Figure 13.

Table 37 – PTC-ARPM states

State Description
CLOSED The AREP is defined, but not capable of sending or receiving FAL-PDUs
OPEN The AREP is defined and capable of sending or receiving FAL-PDUs

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 57 –

Figure 13 – State transition diagram of the PTC-ARPM

9.3.1.2 States

The PTC-ARPM state machine is described in Figure 13, and in Table 38 and Table 39.

Table 38 – PTC-ARPM state table – Sender transitions

Current
state

Event or condition

=> action
Next state

S1 CLOSED EST_req
=>

Establish_req{
cardinality := “one-to-one”,
remote_confirm := “True”,
sequence_control := “True”
conveyance_policy := “Queue”

}

CLOSED

S2 OPEN ABT_req
=>

Abort_req {}
ABT_ind {}

CLOSED

S3 OPEN CS_req
&& Role = “Client” || “Peer”
=>

FAL-PDU_req {
dlsap_id := DLSAP_ID,
called_address := Destination _dlsap_address,
dlsdu := BuildFAL-PDU (

fal_pdu_name := “CS_PDU”,
fal_data := user_data)

}

OPEN

S4 OPEN CS_rsp
&& Role = “Server” || “Peer”
=>

FAL-PDU_req {
dlsap_id := DLSAP_ID,
called_address := Destination _dlsap_address,
dlsdu := BuildFAL-PDU (

fal_pdu_name := “CS_RspPDU”,
fal_data := user_data)

}

OPEN

CLOSED OPEN

R1

S2, R11

S3, S4, R2
R3, R4, R5
R6, R7, R8
R9, R10

S1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 58 – 61158-6-17 © IEC:2007

Table 39 – PTC-ARPM state table – Receiver transitions

Current
state

Event or condition

=> action
Next state

R1 CLOSED Establish_cnf
&& status = “Success”
=>

DLSAP_ID := dlsap_id
EST_cnf {

Status := status
}

OPEN

R2 OPEN FAL-PDU_ind
&& FAL_Pdu_Type (fal_pdu) = “CS_ReqPDU”
&& Role = “Peer” || “Server”
=>

CS_ind{
Source _dlsap_address := calling_address,
user _data := fal_pdu

}

OPEN

R3 OPEN FAL-PDU_ind
&& FAL_Pdu_Type (fal_pdu) = “CS_RspPDU”
&& Role = “Client” || “Peer”
=>

CS_cnf{
user_data := fal_pdu

}

OPEN

R4 OPEN FAL-PDU_ind
&& FAL_Pdu_Type (fal_pdu) <> “CS_ReqPDU”
&& Role = “Server”
=>

(no actions taken)

OPEN

R5 OPEN FAL-PDU_ind
&& FAL_Pdu_Type (fal_pdu) <> “CS_RspPDU”
&& Role = “Client”
=>

(no actions taken)

OPEN

R6 OPEN FAL-PDU_ind
&& FAL_Pdu_Type (fal_pdu) <> “CS_ReqPDU”
&& FAL_Pdu_Type (fal_pdu) <> “CS_RspPDU”
&& Role = “Peer”
=>

(no actions taken)

OPEN

R7 OPEN FAL-PDU_cnf
&& FALPdu_Type(fal-pdu) = “CS_Req PDU”
&& Role = “Client” || “Peer”
&& status <> “success”
=>

CS_Cnf {
user_data := null,
result := status

}

OPEN

R8 OPEN FAL-PDU_cnf
&& Role = “Client” || “Peer”
&& status = “success”
=>

(no actions taken)

OPEN

R9 OPEN FAL-PDU_Ind
&& FALPdu_Type(fal-pdu) = “CS_Rsp PDU”
&& Role = “Server” || “Peer”
=>

(no actions taken)

OPEN

R10 OPEN ErrorToARPM
=>

(No actions taken. See note.)

OPEN

R11 OPEN Abort_ind
=>

ABT_ind{}

CLOSED

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 59 –

9.3.2 Point-to-point user-triggered unconfirmed client/server ARPM (PTU-ARPM)

9.3.2.1 General

The PTU-ARPM State Machine has two possible states. The defined states and their
descriptions are shown in Table 40 and Figure 14.

Table 40 – PTU-ARPM states

State Description
CLOSED The AREP is defined, but not capable of sending or receiving FAL-PDUs
OPEN The AREP is defined and capable of sending or receiving FAL-PDUs

Figure 14 – State transition diagram of the PTU-ARPM

9.3.2.2 State tables

The PTU-ARPM state machine is described in Figure 14, and in Table 41 and Table 42.

Table 41 – PTU-ARPM state table – Sender transitions

Current
state

Event or condition

=> action
Next state

S1 CLOSED EST_req
=>

Establish_req{
cardinality := “one-to-one”,
remote_confirm := “True”,
sequence_control := “False”
conveyance_policy := “Queue”

}

CLOSED

S2 OPEN ABT_req
=>

Abort_req {}
ABT_ind {}

CLOSED

S3 OPEN UCS_req
&& Role = “Client” || “Peer”
=>

FAL-PDU_req {
dlsap_id := DLSAP_ID,
called_address := Remote_dlsap_address,
dlsdu := BuildFAL-PDU (

fal_pdu_name := “UCS_PDU”,
fal_data := user_data)

}

OPEN

S4 OPEN UCS_req
&& Role = “Server”
=>

(no actions taken)

OPEN

CLOSED OPEN
R1

S2, R6

S1 S3, S4, R2
R3, R4, R5

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 60 – 61158-6-17 © IEC:2007

Table 42 – PTU-ARPM state table – Receiver transitions

Current
state

Event or condition

=> action
Next state

R1 CLOSED Establish_cnf
&& status = “Success”
=>

DLSAP_ID := dlsap_id
EST_cnf {

Status := status
}

OPEN

R2 OPEN FAL-PDU_ind
&& FAL_Pdu_Type (fal_pdu) = “UCS_PDU”
&& Role = “Server” || “Peer”
=>

CS_ind{
remote_dlsap_address := calling_address,
user_data := fal_pdu

}

OPEN

R3 OPEN FAL-PDU_ind
&& FAL_Pdu_Type (fal_pdu) <> “UCS_PDU”
&& Role = “Client” || “Peer”
=>

(no actions taken)

OPEN

R4 OPEN FAL-PDU_ind
&& Role = “Client”
=>

(no actions taken)

OPEN

R5 OPEN ErrorToARPM
=>

(No actions taken. See note.)

OPEN

R6 OPEN Abort_ind
=>

ABT_ind{}

CLOSED

9.3.3 Point-to-point network-scheduled unconfirmed client/server ARMP (PSU-ARPM)

9.3.3.1 General

The PSU-ARPM State Machine has two possible states. The defined states and their
descriptions are shown in Table 43 and Figure 15.

Table 43 – PSU-ARPM states

State Description

CLOSED The AREP is defined but not capable of sending or receiving FAL-PDUs

OPEN The AREP is defined and capable of sending or receiving FAL-PDUs

Figure 15 – State transition diagram of the PSU-ARPM

9.3.3.2 State tables

The PSU-ARPM state machine is described in Figure 15, and in Table 44 and Table 45.

CLOSED OPEN
R1

S2, R5

S1 S3, S4, S5
R2, R3, R4

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 61 –

Table 44 – PSU-ARPM state table – Sender transitions

Current
state

Event or condition

=> action
Next state

S1 CLOSED EST_req
=>

Establish_req{
cardinality := “one-to-one”,
remote_confirm := “False”,
sequence_control := “False”
conveyance_policy := “Buffer”

}

CLOSED

S2 OPEN ABT_req
=>

Abort_req {}
ABT_ind {}

CLOSED

S3 OPEN UCS_req
&& Role =“PushPublisher”
=>

LoadBuffer(Remote_dlsap_address, user_data)

OPEN

S4 OPEN StartTransmitCycleTimer expired
&& Role =“PushPublisher”
=>

FAL-PDU_req {
dlsap_id := DLSAP_ID,
called_address := Remote_dlsap_address,,
dlsdu := BuildFAL-PDU (

fal_pdu_name := “UCS_PDU”,
fal_data := local_buf)

},
StartTransmitCycleTimer(arep_id)

OPEN

S5 OPEN UCS_req
&& Role = “Subscriber”
=>

(no actions taken)

OPEN

Table 45 – PSU-ARPM state table – Receiver transitions

Current
state

Event or condition

=> action
Next state

R1 CLOSED Establish_cnf
&& status = “Success”
=>

DLSAP_ID := dlsap_id
EST_cnf {}
StartTransmitCycleTimer(arep_id)

OPEN

R2 OPEN FAL-PDU_ind
&& Role = “Subscriber”
&& FAL_Pdu_Type (fal_pdu) = “UCS_PDU”
=>

UCS_ind {
remote_dlsap_address := calling_address,
user_data := fal_pdu,

}

OPEN

R3 OPEN FAL-PDU_ind
&& FAL_Pdu_Type (fal_pdu) <> “UCS_PDU”
=>

(no actions taken)

OPEN

R4 OPEN FAL-PDU_ind
&& Role = “Publisher”
=>

(no actions taken)

OPEN

R5 OPEN Abort_ind
=>

ABT_ind{}

CLOSED

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 62 – 61158-6-17 © IEC:2007

9.3.4 Multipoint user-triggered unconfirmed publisher/subscriber ARPM (MTU-ARPM)

9.3.4.1 General

The MTU-ARPM State Machine has two possible states. The defined states and their
descriptions are shown in Table 46 and Figure 16.

Table 46 – MTU-ARPM states

State Description

CLOSED The AREP is defined, but not capable of sending or receiving FAL-PDUs

OPEN The AREP is defined and capable of sending or receiving FAL-PDUs

Figure 16 – State transition diagram of the MTU-ARPM

9.3.4.2 State tables

The MTU-ARPM state machine is described in Figure 16, and in Table 47 and Table 48.

Table 47 – MTU-ARPM state table – Sender transitions

Current
state

Event or condition
=> action Next state

S1 CLOSED EST_req
=>

Establish_req{
cardinality := “one-to-many”,
remote_confirm := “False”,
sequence_control := “True”
conveyance_policy := “Queue”

}

CLOSED

S2 OPEN ABT_req
=>

Abort_req {}
ABT_ind {}

CLOSED

S3 OPEN UCS_req
&& Role = “Publisher”
=>

FAL-PDU_req {
dlsap_id := DLSAP_ID,
called_address := Remote_dlsap_address,
dlsdu := BuildFAL-PDU (

fal_pdu_name := “UCS_PDU”,
fal_data := user_data)

}

OPEN

S4 OPEN UCS_req
&& Role = “Subscriber”
=>

(no actions taken)

OPEN

CLOSED OPEN
R1

S2, R6

S1 S3, S4, R2
R3, R4, R5

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 63 –

Table 48 – MTU-ARPM state table – Receiver transitions

Current
state

Event or condition

=> action
Next state

R1 CLOSED Establish_cnf
&& status = “Success”
=>

DLSAP_ID := dlsap_id
EST_cnf {}

OPEN

R2 OPEN FAL-PDU_ind
&& FAL_Pdu_Type (fal_pdu) = “UCS_PDU”
&& Role = “Subscriber”
=>

CS_ind{
remote_dlsap_address := calling_address,
user_data := fal_pdu

}

OPEN

R3 OPEN FAL-PDU_ind
&& FAL_Pdu_Type (fal_pdu) <> “UCS_PDU”
=>

(no actions taken)

OPEN

R4 OPEN FAL-PDU_ind
&& Role = “Publisher”
=>

(no actions taken)

OPEN

R5 OPEN ErrorToARPM
=>

(No actions taken. See note.)

OPEN

R6 OPEN Abort_ind
=>

ABT_ind{}

CLOSED

9.3.5 Multipoint network-Scheduled Unconfirmed publisher/subscriber ARPM (MSU-
ARPM)

9.3.5.1 General

The MSU-ARPM State Machine has two possible states. The defined states and their
descriptions are shown in Table 49 and Figure 17.

Table 49 – MSU-ARPM states

State Description
CLOSED The AREP is defined but not capable of sending or receiving FAL-PDUs
OPEN The AREP is defined and capable of sending or receiving FAL-PDUs

Figure 17 – State transition diagram of the MSU-ARPM

9.3.5.2 State tables

The MSU-ARPM state machine is described in Figure 17, and in Table 50 and Table 51.

CLOSED OPEN
R1

S2, R5

S1 S3, S4, S5
R2, R3, R4

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 64 – 61158-6-17 © IEC:2007

Table 50 – MSU-ARPM state table – Sender transitions

Current
state

Event or condition

=> action
Next state

S1 CLOSED EST_req
=>

Establish_req{
cardinality := “one-to-many”,
remote_confirm := “False”,
sequence_control := “False”
conveyance_policy := “Buffer”

}

CLOSED

S2 OPEN ABT_req
=>

Abort_req {}
ABT_ind {}

CLOSED

S3 OPEN UCS_req
&& Role =“Publisher”
=>

LoadBuffer(Remote_dlsap_address, user_data)

OPEN

S4 OPEN StartTransmitCycleTimer expired
&& Role =“Publisher”
=>

FAL-PDU_req {
dlsap_id := DLSAP_ID,
called_address := Remote_dlsap_address,,
dlsdu := BuildFAL-PDU (

fal_pdu_name := “UCS_PDU”,
fal_data := local_buf)

},
StartTransmitCycleTimer(arep_id)

OPEN

S5 OPEN UCS_req
&& Role = “Subscriber”
=>

(no actions taken)

OPEN

Table 51 – MSU-ARPM state table – Receiver transitions

Current
state

Event or condition

=> action
Next state

R1 CLOSED Establish_cnf
&& status = “Success”
=>

DLSAP_ID := dlsap_id
EST_cnf {}
StartTransmitCycleTimer(arep_id)

OPEN

R2 OPEN FAL-PDU_ind
&& Role = “Subscriber”
&& FAL_Pdu_Type (fal_pdu) = “UCS_PDU”
=>

UCS_ind {
remote_dlsap_address := calling_address,
user_data := fal_pdu,

}

OPEN

R3 OPEN FAL-PDU_ind
&& || FAL_Pdu_Type (fal_pdu) <> “UCS_PDU”
=>

(no actions taken)

OPEN

R4 OPEN FAL-PDU_ind
&& Role = “Publisher”
=>

(no actions taken)

OPEN

R5 OPEN Abort_ind
=>

ABT_ind{}

CLOSED

9.4 Functions

Table 52 lists the functions used by the ARPMs, their arguments, and their descriptions.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 65 –

Table 52 – Functions used by the ARPMs

Function name Parameter Description
BuildFAL-PDU fal_pdu_name,

fal_data
This function builds an FAL-PDU out of the parameters given as
input variables

FAL_Pdu_Type fal_pdu This function decodes the FAL-PDU that is conveyed in the
dls_user_data parameter and retrieves one of the FALPDU types

LoadBuffer Remote_dlsap_address,
user_data

This function loads user data into the local buffer.

StartTransmitCycleTimer arep_id This function starts the timer specified by arep_id.

10 DLL mapping protocol machine (DMPM)

10.1 General

The DLL Mapping Protocol Machine is common to all the AREP types.

The primitives issued by ARPM to DMPM are passed to the data-link layer as the DLS
primitives. The primitives issued to DMPM from the data-link layer are notified to an
appropriate ARPM out of the ARPMs.

DMPM adds and deletes parameters to/from the primitives exchanged between ARPM and the
data-link layer if necessary.

– Remarks about DL-identifiers:
The data-link layer specification defines two types of identifiers to distinguish each DL
primitive or to match one DL outgoing primitive with the corresponding incoming primitive.
These two identifiers are suffixed as DL-identifier and DLS-user-identifier, respectively. In a
real implementation of an FAL-DL interface, these identifications may be achieved by means
of a pointer to a memory location or a return value of a function call, or something else. For
this reason, these identifiers are not included as parameters of the primitives issued by the
ARPM.

The “DL-identifiers” and “DLS-user-identifiers” are mandatory in the DL-services. The FAL
assumes that the values of these parameters are provided by a local means.

– Remark about DLS-user identification:
It is assumed that a connection between one ARPM instance and one DMPM instance is
established locally rather than by means of a protocol. Therefore, DLS-user identification
parameters are not used in the primitives issued by the ARPM.

– Remark about buffer or queue identifiers:
The data-link layer uses parameters to identify the queue or buffer shared between the data-
link layer and the DLS-user. Although they are useful to clarify the operations of the data-link
layer, none of them affects the protocol behaviour of the FAL and DL. In a real implementation,
these parameters are implementation-dependent. Therefore, parameters that correspond
direct to these buffer or queue identifiers are not described. A means for identifying the
buffers and queues between the FAL and the DL is a local matter.

– Remark about initialization of the data-link layer:
The data-link layer specification defines services to setup resources within the layer, such as
DL-Create or DL-Bind services. Although they are useful to clarify the operations of the data-
link layer, none of them affects the protocol behavior of the FAL and DL. Therefore, the FAL
assumes that such initialization procedures have been executed prior to the operations of the
FAL state machines.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 66 – 61158-6-17 © IEC:2007

10.2 Primitive definitions

10.2.1 Primitives exchanged between DMPM and ARPM

Table 53 lists the primitives exchanged between the DMPM and the ARPM.

Table 53 – Primitives exchanged between DMPM and ARPM

Primitive name Source Associated parameters Functions
Establish_req ARPM cardinality,

remote_confirm,
conveyance_policy,
sequence_control

This primitive is used to request the establishment
of a AR

Abort_req ARPM This primitive is used to request an abort without
transferring an FAL-PDU.

FAL-PDU_req ARPM dlsap_id,
called_address,
dll_priority,
dlsdu

This primitive is used to request the DMPM to
transfer an FAL-PDU. It passes the FAL-PDU to
the DMPM as a DLSDU. It also carries some of
the data-link layer parameters that are referenced
there.

Establish_cnf DMPM dlsap_id This primitive is used to report completion of the
requested establishment of an AR.

FAL-PDU_ind DMPM calling_address,
fal_pdu,

This primitive is used to pass an FAL-PDU
received as a data-link layer service data unit to a
designated ARPM. It also carries some of the
data-link layer parameters that are referenced in
the ARPM.

FAL-PDU_cnf DMPM status

Abort_ind DMPM reason This primitive is used to convey the indication of
abort of provider and its reason.

ErrorToARPM DMPM originator,
reason

This primitive is used to convey selected
communication errors reported by the data-link
layer to a designated ARPM.

10.2.2 Primitives exchanged between data-link layer and ARPM

Table 54 lists the primitives exchanged between the data-link layer and the ARPM.

Table 54 – Primitives exchanged between data-link layer and DMPM

Primitive name Source Associated parameters Functions
DL-UNITDATA _req DMPM dl_called address,

dl_dls_user_data

DL_CREATE_req DMPM Maximum DLSDU size,
Maximum queue depth,
Queue DL-identifier

DL_BIND_req DMPM dl_service_subtype,
dl_dlsap_id

DL-DELETE_req DMPM Queue DL-identifier

DL-UNBIND_req DMPM DLSAP DL-identifier

DLM-SET_req DMPM DLM-object-identifier,
Desired-value,
dl_status

DLM-GET_req DMPM DLM-object-identifier,
Current-value,
Status

DLM-ACTION_req DMPM Desired-action

DL-UNITDATA_ind Data-link layer dl_calling_address,
dl_dls_user_data

DL-UNITDATA_cnf Data-link layer dl_status

DLM-ACTION_cnf Data-link layer dl_status

DLM-EVENT_ind Data-link layer DLM-event-identifier

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 67 –

10.2.3 Parameters of DMPM/data-link layer primitives

The parameters used with the primitives exchanged between the DMPM and the data-link
layer are identical to those defined in Section 4 of this PAS. They are prefixed by “dl_” to
indicate that they are used by the FAL.

10.3 DMPM state machine

10.3.1 DMPM states

The DMPM State Machine has only one possible state. The defined state and their
descriptions are shown in Table 55 and Figure 18.

Figure 18 – State transition diagram of DMPM

Table 55 – DMPM states

State Description

ACTIVE The DMPM in the ACTIVE state is ready to transmit or receive primitives to or from
the data-link layer and the ARPM.

10.3.2 DMPM state table

The DMPM state machine is described in Table 56 and Table 57

Table 56 – DMPM state table – Sender transitions

Current
state

Event or condition

=> action
Next state

S1 ACTIVE Establish_req
&& cardinality = “one-to-one”
&& remote_confirm = “True”
&& sequence_control := “True”
=>

DL_BIND_req(in){
dl_service_subtype := “ASS”

}

DL_BIND_req(out) -- immediate response
=>

Establish_cnf{
dlsap_id := dl_dlsap_id

}

ACTIVE

ACTIVE All transitions

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 68 – 61158-6-17 © IEC:2007

Current
state

Event or condition

=> action
Next state

S2 ACTIVE Establish_req
&& cardinality = “one-to-one”
&& remote_confirm = “True”
&& sequence_control := “False”
=>

DL_BIND_req(in){
dl_service_subtype := “AUS”

}

DL_BIND_req(out) -- immediate response
=>

Establish_cnf{
dlsap_id := dl_dlsap_id

}

ACTIVE

S3 ACTIVE Establish_req
&& cardinality = “one-to-one”
&& remote_confirm = “False”
&& sequence_control := “False”
=>

DL_BIND_req(in){
dl_service_subtype := “UUS”

}

DL_BIND_req(out) -- immediate response
=>

Establish_cnf{
dlsap_id := dl_dlsap_id

}

ACTIVE

S4 ACTIVE Establish_req
&& cardinality = “one-to-many”
&& remote_confirm = “False”
&& sequence_control := “False”
=>

DL_BIND_req(in){
dl_service_subtype := “MUS”

}

DL_BIND_req(out) -- immediate response
=>

Establish_cnf{
dlsap_id := dl_dlsap_id

}

ACTIVE

S5 ACTIVE Establish_req
&& cardinality = “one-to-many”
&& remote_confirm = “False”
&& sequence_control := “True”
=>

DL_BIND_req(in){
dl_service_subtype := “MSS”

}

DL_BIND_req(out) -- immediate response
=>

Establish_cnf{
dlsap_id := dl_dlsap_id

}

ACTIVE

S6 ACTIVE Abort_req
=>

DL-UNBIND_req{},
Abort_ind{}

ACTIVE

S7 ACTIVE FAL-PDU_req
=>

PickDlsap (dlsap_id),

DL-UNITDATA _req{
dl_called_address := called_address,
dl_dls_user_data := dlsdu

}

ACTIVE

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © IEC:2007 – 69 –

Table 57 – DMPM state table – Receiver transitions

Current
state

Event or condition

=> action
Next state

R1 ACTIVE DL_Unitdata.ind
&& FindAREP (dl_called_address) = “False”
=>

(no actions taken)

ACTIVE

R2 ACTIVE DL_Unitdata.ind
&& FindAREP (dl_called_address) = “True”
=>

FAL-PDU_ind {
calling_address := dl_calling_address,
fal_pdu := dl_dls_user_data

}

ACTIVE

R3 ACTIVE DL_Unitdata.cnf
&& dl_status <> “success”
=>

ErrorToARPM {
originator := “local_dls”,
reason := dl_status

}
FAL-PDU_cnf {

status := dl_status
}

ACTIVE

R4 ACTIVE DL_Unitdata.cnf
&& dl_status = “success”
=>

(no actions taken)
FAL-PDU_cnf {

status := dl_status
}

ACTIVE

10.3.3 Functions used by DMPM

Table 58 contains the functions used by the DMPM, their arguments and their descriptions.

Table 58 – Functions used by the DMPM

Function name Parameter Description

PickDlsap dlsap_id This function selects the DLSAP specified by the dlsap_id
parameter. After this function is executed, the attributes of the
selected DLSAP are available to the state machine.

FindAREP dl_called_address This function identifies the AREP that shall be bound with an
active DMPM. True means the AREP exists. After this function is
executed, the attributes of the selected AREP are available to the
state machine.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 61
15

8-6
-17

:20
07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 70 – 61158-6-17 © IEC:2007

Bibliography

IEC/TR 61158-1 (Ed.2.0), Industrial communication networks – Fieldbus specifications –
Part 1: Overview and guidance for the IEC 61158 and IEC 61784 series

IEC 61158-3-17, Industrial communication networks – Fieldbus specifications – Part 3-17:
Data-link layer service definition – Type 17 elements

IEC 61158-4-17, Industrial communication networks – Fieldbus specifications – Part 4-17:
Data-link layer protocol specification – Type 17 elements

IEC 61784-1 (Ed.2.0), Industrial communication networks – Profiles – Part 1: Fieldbus profiles

IEC 61784-2, Industrial communication networks – Profiles – Part 2: Additional fieldbus
profiles for real-time networks based on ISO/IEC 8802-3

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 72 – 61158-6-17 © CEI:2007

SOMMAIRE

AVANT-PROPOS .. 75
INTRODUCTION ... 77
1 Domaine d'application .. 78

1.1 Généralités.. 78
1.2 Spécifications .. 78
1.3 Conformité .. 79

2 Références normatives ... 79
3 Définitions .. 79

3.1 Termes et définitions ... 79
3.2 Abréviations et symboles ... 85
3.3 Conventions .. 87

4 Description de la syntaxe abstraite ... 89
4.1 Syntaxe abstraite des unités PDU de couche FAL ... 89
4.2 Syntaxe abstraite du corps des unités PDU ... 89
4.3 Unités PDU destinées aux éléments ASE .. 91
4.4 Définition des types ... 94
4.5 Types de données ... 97

5 Syntaxe de transfert ... 99
5.1 Vue d'ensemble du codage.. 99
5.2 Codage de l'en-tête des unités APDU .. 99
5.3 Codage du corps des unités APDU .. 100
5.4 Règles de codage des types de données .. 101

6 Structure des diagrammes d'états de protocole de la couche FAL 105
7 Diagramme d'états de contexte d'application .. 107
8 Machines de protocole de service FAL (FSPM) .. 107

8.1 Généralités.. 107
8.2 Paramètres communs des primitives ... 107
8.3 Machine de protocole d'élément ASE de variable (VARM) 107
8.4 Machine de protocole d'élément ASE d'événement (EVTM) 111
8.5 Machine de protocole d'élément ASE de région de charge (LDRM) 113
8.6 Machine de protocole d'élément ASE d'invocation de fonctions (FNIM) 115
8.7 Machine de protocole d'élément ASE de temps (TIMM) 119
8.8 Machine de protocole d'élément ASE de gestion de réseau (NWMM) 123

9 Machines de protocole de relations d'applications (ARPM) ... 127
9.1 Généralités.. 127
9.2 Définition des primitives .. 127
9.3 Diagramme d'états .. 128
9.4 Fonctions .. 137

10 Machine de protocole de mapping de la couche de liaison de données (DMPM) 137
10.1 Généralités.. 137
10.2 Définition des primitives .. 138
10.3 Diagramme d'états de la machine DMPM .. 139

Bibliographie ... 143

Figure 1 – Vue d'ensemble d'une unité APDU ... 99

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © CEI:2007 – 73 –

Figure 2 – Champ Type .. 100
Figure 3 – Composant octet d'identification ... 100
Figure 4 – Octet de longueur (format à un octet) ... 101
Figure 5 – Octets de longueur (format à trois octets) .. 101
Figure 6 – Relations entre les machines de protocole et les couches adjacentes 106
Figure 7 – Diagramme de passages d'état de la machine VARM ... 108
Figure 8 – Diagramme de passages d'état de la machine EVTM ... 112
Figure 9 – Diagramme de passages d'état de la machine LDRM ... 114
Figure 10 – Diagramme de passages d'état de la machine FNIM .. 116
Figure 11 – Diagramme de passages d'état de la machine TIMM .. 120
Figure 12 – Diagramme de passages d'état de la machine NWMM 124
Figure 13 – Diagramme de passages d'état de la machine PTC-ARPM 129
Figure 14 – Diagramme de passages d'état de la machine PTU-ARPM 131
Figure 15 – Diagramme de passages d'état de la machine PSU-ARPM 132
Figure 16 – Diagramme de passages d'état de la machine MTU-ARPM 134
Figure 17 – Diagramme de passages d'état de la machine MSU-ARPM 135
Figure 18 – Diagramme de passages d'état de la machine DMPM 139

Tableau 1 – Conventions utilisées pour les définitions de diagramme d'états
d'entité AE .. 87
Tableau 2 – Codage du champ FalArHeader ... 99
Tableau 3 – Primitives échangées entre l'utilisateur FAL et la machine VARM 107
Tableau 4 – Paramètres utilisés avec les primitives échangées entre l'utilisateur FAL
et la machine VARM ... 108
Tableau 5 – Table d'états de la machine VARM: passages expéditeur 108
Tableau 6 – Table d'états de la machine VARM: passages destinataire 110
Tableau 7 – Fonctions utilisées par la machine VARM .. 111
Tableau 8 – Primitives échangées entre l'utilisateur FAL et la machine EVTM 111
Tableau 9 – Paramètres utilisés avec les primitives échangées entre l'utilisateur FAL
et la machine EVTM .. 111
Tableau 10 – Table d'états de la machine EVTM: passages expéditeur............................... 112
Tableau 11 – Table d'états de la machine EVTM: passages destinataire 112
Tableau 12 – Fonction utilisée par la machine EVTM .. 113
Tableau 13 – Primitives échangées entre l'utilisateur FAL et la machine LDRM 113
Tableau 14 – Paramètres utilisés avec les primitives échangées entre l'utilisateur FAL
et la machine LDRM ... 113
Tableau 15 – Table d'états de la machine LDRM: passages expéditeur 114
Tableau 16 – Table d'états de la machine LDRM: passages destinataire 115
Tableau 17 – Fonctions utilisées par la machine LDRM .. 115
Tableau 18 – Primitives échangées entre l'utilisateur FAL et la machine FNIM 116
Tableau 19 – Paramètres utilisés avec les primitives échangées entre l'utilisateur FAL
et la machine FNIM ... 116
Tableau 20 – Table d'états de la machine FNIM: passages expéditeur 117
Tableau 21 – Table d'états de la machine FNIM: passages destinataire 117
Tableau 22 – Fonctions utilisées par la machine FNIM.. 119

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 74 – 61158-6-17 © CEI:2007

Tableau 23 – Primitives échangées entre l'utilisateur FAL et la machine TIMM 119
Tableau 24 – Paramètres utilisés avec les primitives échangées entre l'utilisateur FAL
et la machine TIMM .. 119
Tableau 25 – Etats de la machine TIMM ... 120
Tableau 26 – Table d'états de la machine TIMM: passages expéditeur 121
Tableau 27 – Table d'états de la machine TIMM: passages destinataire 122
Tableau 28 – Fonctions utilisées par la machine TIMM ... 123
Tableau 29 – Primitives échangées entre l'utilisateur FAL et la machine NWMM 123
Tableau 30 – Paramètres utilisés avec les primitives échangées entre l'utilisateur FAL
et la machine NWMM .. 124
Tableau 31 – Etats de la machine NWMM ... 124
Tableau 32 – Table d'états de la machine NWMM: passages expéditeur 125
Tableau 33 – Table d'états de la machine NWMM: passages destinataire 126
Tableau 34 – Fonctions utilisées par la machine NWMM ... 127
Tableau 35 – Primitives échangées entre la machine FSPM et la machine ARPM 128
Tableau 36 – Paramètres utilisés avec les primitives échangées entre
l'utilisateur FSPM et la machine ARPM ... 128
Tableau 37 – Etats de la machine PTC-ARPM .. 128
Tableau 38 – Table d'états de la machine PTC-ARPM: passages expéditeur 129
Tableau 39 – Table d'états de la machine PTC-ARPM: passages destinataire 130
Tableau 40 – Etats de la machine PTU-ARPM .. 131
Tableau 41 – Table d'états de la machine PTU-ARPM: passages expéditeur 131
Tableau 42 – Table d'états de la machine PTU-ARPM: passages destinataire 132
Tableau 43 – Etats de la machine PSU-ARPM .. 132
Tableau 44 – Table d'états de la machine PSU-ARPM: passages expéditeur 133
Tableau 45 – Table d'états de la machine PSU-ARPM: passages destinataire 133
Tableau 46 – Etats de la machine MTU-ARPM .. 134
Tableau 47 – Table d'états de la machine MTU-ARPM: passages expéditeur 134
Tableau 48 – Table d'états de la machine MTU-ARPM: passages destinataire 135
Tableau 49 – Etats de la machine MSU-ARPM ... 135
Tableau 50 – Table d'états de la machine MSU-ARPM: passages expéditeur 136
Tableau 51 – Table d'états de la machine MSU-ARPM: passages destinataire 136
Tableau 52 – Fonctions utilisées par la machine ARPM .. 137
Tableau 53 – Primitives échangées entre la machine DMPM et la machine ARPM 138
Tableau 54 – Primitives échangées entre la couche Liaison de données et la
machine DMPM .. 139
Tableau 55 – Etats de la machine DMPM .. 140
Tableau 56 – Table d'états de la machine DMPM: passages expéditeur 140
Tableau 57 – Table d'états de la machine DMPM: passages destinataire 141
Tableau 58 – Fonctions utilisées par la machine DMPM .. 142

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © CEI:2007 – 75 –

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

RÉSEAUX DE COMMUNICATION INDUSTRIELS –

SPÉCIFICATIONS DES BUS DE TERRAIN –

Partie 6-17: Spécification de protocole de la couche d’application –
Éléments de Type 17

AVANT-PROPOS
1) La Commission Electrotechnique Internationale (CEI) est une organisation mondiale de normalisation

composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a
pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les
domaines de l'électricité et de l'électronique. A cet effet, la CEI - entre autres activités - publie des Normes
internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au
public (PAS) et des Guides (ci-après dénommés "Publication(s) de la CEI"). Leur élaboration est confiée à des
comités d'études, aux travaux desquels tout Comité national de la CEI intéressé par le sujet traité peut
participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec
la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de
Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.

2) Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure
du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de
la CEI intéressés sont représentés dans chaque comité d'études.

3) Les Publications de la CEI se présentent sous la forme de recommandations internationales et sont agréées
comme telles par les Comités nationaux de la CEI. Tous les efforts raisonnables sont entrepris afin que
la CEI s'assure de l'exactitude du contenu technique de ses publications; la CEI ne peut pas être tenue
responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur
final.

4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de la CEI s'engagent, dans toute la
mesure possible, à appliquer de façon transparente les Publications de la CEI dans leurs publications
nationales et régionales. Toutes divergences entre toutes Publications de la CEI et toutes publications
nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.

5) La CEI n'a prévu aucune procédure de marquage valant indication d'approbation et ne peut pas engager sa
responsabilité pour les équipements déclarés conformes à une de ses Publications.

6) Il convient que tous les utilisateurs s'assurent qu'ils sont en possession de la dernière édition de cette
publication.

7) Aucune responsabilité ne doit être imputée à la CEI, à ses administrateurs, employés, auxiliaires ou
mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités
nationaux de la CEI, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre
dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais
de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de la CEI ou de
toute autre Publication de la CEI ou au crédit qui lui est accordé.

8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications
référencées est obligatoire pour une application correcte de la présente publication.

NOTE L'utilisation de certains des types de protocole associés est restreinte par les détenteurs des droits de
propriété intellectuelle correspondants. Dans tous les cas, l'engagement de renonciation partielle aux droits de
propriété intellectuelle, pris par les détenteurs de ces droits, autorise l'utilisation d'un type de protocole de
couche Liaison de données particulier avec des protocoles de couche physique et de couche d’application dans les
combinaisons de types explicitement spécifiées dans la série CEI 61784. L'utilisation des divers types de protocole
dans d'autres combinaisons peut nécessiter l'autorisation de leurs détenteurs de droits de propriété intellectuelle
respectifs.

La CEI attire l'attention sur le fait qu'il est déclaré que la conformité à la présente norme peut impliquer l'utilisation
des droits de propriété ci-dessous, la notation [xx] désignant le détenteur du droit associé:

Type 17:

Demande PCT n° PCT/JP2004/011537 [YEC] Méthode de contrôle de la communication

Demande PCT n° PCT/JP2004/011538 [YEC] Méthode de contrôle de la communication

La CEI ne prend pas position eu égard à la preuve, la validité et la portée de ces droits de propriété.

Les détenteurs de ces droits de propriété ont donné l'assurance à la CEI qu'ils consentent à négocier des licences
avec des demandeurs du monde entier, en des termes et à des conditions raisonnables et non discriminatoires. A
ce propos, la déclaration des détenteurs de ces droits de propriété est enregistrée à la CEI. Des informations
peuvent être obtenues auprès de:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 76 – 61158-6-17 © CEI:2007

[YEC]: Yokogawa Electric Corporation
2-9-32 Nakacho, Musashino-shi, 180-8750 Tokyo,
180-8750 Tokyo,
Japon
Attn: Intellectual Property & Standardization Center

L'attention est attirée sur le fait que certains des éléments de la présente norme peuvent faire l'objet de droits de
propriété autres que ceux mentionnés ci-dessus. La CEI ne doit pas être tenue pour responsable de ne pas avoir
identifié de tels droits de propriété et de ne pas avoir signalé leur existence.

La Norme internationale CEI 61158-6-17 a été établie par le sous-comité 65C: Réseaux
industriels, du comité d'études 65 de la CEI: Mesure, commande et automation dans les
processus industriels.

Cette première édition et les parties de la sous-série CEI 61158-6 associées annulent et
remplacent la CEI 61158-6:2003. L'édition de la présente partie constitue un ajout technique.
La présente partie et les parties associées au Type 17 annulent et remplacent également la
CEI/PAS 62405 publiée en 2005.

Cette édition de la CEI 61158-6 comporte les modifications importantes suivantes par rapport
à l'édition précédente:

a) suppression de l'ancien bus de terrain de Type 6 pour défaut de pertinence de
commercialisation;

b) ajout de nouveaux types de bus de terrain;
c) fractionnement de la Partie 6 de la troisième édition en plusieurs parties numérotées -6-2,

-6-3, etc.

La présente version bilingue (2013-09) correspond à la version anglaise monolingue publiée
en 2007-12.

Le texte anglais de cette norme est issu des documents 65C/476/FDIS et 65C/487/RVD.

Le rapport de vote 65C/487/RVD donne toute information sur le vote ayant abouti à
l’approbation de cette norme.

La version française de cette norme n’a pas été soumise au vote.

La présente publication a été rédigée selon les Directives ISO/CEI, Partie 2.

Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de
stabilité indiquée sur le site web de la CEI sous http://webstore.iec.ch dans les données
relatives à la publication recherchée. A cette date, la publication sera:

• reconduite,

• supprimée,

• remplacée par une édition révisée, ou

• amendée.
NOTE La révision de la présente norme sera synchronisée avec les autres parties de la série CEI 61158.

La liste de toutes les parties de la série CEI 61158, publiée sous le titre général Réseaux de
communication industriels – Spécifications des bus de terrain, peut être consultée sur le site
web de la CEI.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

http://webstore.iec.ch/
https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © CEI:2007 – 77 –

INTRODUCTION

La présente partie de la CEI 61158 s'inscrit dans une série créée pour faciliter
l'interconnexion des composants de systèmes d'automation. Elle est liée à d'autres normes de
la série définie par le modèle de référence des bus de terrain "à trois couches" décrit dans la
CEI/TR 61158-1.

Le protocole d'application fournit le service d'application au moyen des services disponibles
au niveau de la couche de liaison de données ou de la couche immédiatement inférieure. Le
principal objectif de la présente norme est de définir un ensemble de règles de
communication, exprimées en termes de procédures, que doivent suivre les entités
d'application (Application Entity, AE) homologues au moment de la communication. Ces
règles de communication ont pour vocation de fournir une base de développement stable
permettant d'atteindre différents objectifs:

• guider les développeurs et les concepteurs;

• réaliser les essais et acquérir l'équipement;

• établir un accord d'intégration des systèmes dans l'environnement de systèmes ouverts;

• améliorer la compréhension des communications en temps critique au sein de l'OSI.

La présente norme porte en particulier sur la communication et l'interfonctionnement des
capteurs, des effecteurs et des autres appareils d'automation. Grâce à cette norme et
à d'autres normes des modèles de référence OSI ou de bus de terrain, des systèmes par
ailleurs incompatibles peuvent fonctionner ensemble, quelle que soit leur combinaison.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 78 – 61158-6-17 © CEI:2007

RÉSEAUX DE COMMUNICATION INDUSTRIELS –
SPÉCIFICATIONS DES BUS DE TERRAIN –

Partie 6-17: Spécification de protocole de la couche d’application –

Éléments de Type 17

1 Domaine d'application

1.1 Généralités

La couche d’application de bus de terrain (Fieldbus Application Layer, FAL) procure aux
programmes de l'utilisateur un moyen d'accès à l'environnement de communication des bus
de terrain. A cet égard, la couche FAL peut être considérée comme une "fenêtre entre
programmes d'application correspondants".

La présente norme fournit des éléments communs pour les communications de messagerie en
temps critique ou non entre des programmes d'application dans un environnement et avec un
matériel d'automation spécifiques aux bus de terrain de Type 17. L'expression "en temps
critique" signale l'existence d'une fenêtre temporelle dans laquelle des actions spécifiées
doivent être exécutées, avec un niveau de certitude défini. La non-réalisation des actions
spécifiées dans la fenêtre temporelle induit un risque de défaillance des applications qui
demandent ces actions, avec les risques afférents pour l'équipement, les installations et
éventuellement la vie humaine.

La présente norme spécifie les interactions entre les applications distantes et définit le
comportement, visible par un observateur externe, assuré par la couche d’application de bus
de terrain de Type 17, en termes

a) de syntaxe abstraite formelle définissant les unités de données de protocole de la
couche d’application, transmises entre les entités d'application en communication;

b) de syntaxe de transfert définissant les règles de codage qui s'appliquent aux unités de
données de protocole de la couche d’application;

c) de diagramme d'états de contexte d'application définissant le comportement de service
d'application observable entre les entités d'application en communication;

d) de diagrammes d'états de relations d'applications définissant le comportement de
communication observable entre les entités d'application en communication.

La présente norme vise à définir le protocole mis en place pour:

1) définir la représentation filaire des primitives de service définies dans la CEI 61158-5-17,
et

2) définir le comportement visible par un observateur externe associé à leur transfert.

La présente norme spécifie le protocole de la couche d’application de bus de terrain de
Type 17, en conformité avec le modèle de référence de base OSI (ISO/CEI 7498) et avec la
structure de la couche Application OSI (ISO/CEI 9545).

1.2 Spécifications

La présente norme a pour objectif principal de spécifier la syntaxe et le comportement du
protocole de la couche d’application qui transmet les services de la couche d’application
définis dans la CEI 61158-5-17.

Un objectif secondaire consiste à fournir des chemins de migration à partir des protocoles de
communication industriels antérieurs. Ce dernier objectif explique la diversité des protocoles
normalisés dans la série CEI 61158-6.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © CEI:2007 – 79 –

1.3 Conformité

La présente norme ne spécifie pas de mises en œuvre ni de produits particuliers, pas plus
qu'elle ne limite les mises en œuvre des entités de la couche d’application dans les systèmes
d'automation industriels. La conformité est obtenue par le biais de la mise en œuvre de cette
spécification de protocole de la couche d’application.

2 Références normatives

Les documents de référence suivants sont indispensables pour l'application du présent
document. Pour les références datées, seule l'édition citée s'applique. Pour les références
non datées, la dernière édition du document de référence s'applique (y compris les éventuels
amendements).

IEC 61158-5-17, Industrial communication networks – Fieldbus specifications – Part 5-17:
Application layer service definition – Type 17 elements (disponible en anglais uniquement)

ISO/CEI 7498 (toutes les parties), Technologies de l'information – Interconnexion de
systèmes ouverts (OSI) – Modèle de référence de base

ISO/CEI 8824-2, Technologies de l'information – Notation de syntaxe abstraite
numéro un (ASN.1): spécification des objets informationnels

ISO/CEI 8825-1, Technologies de l'information – Règles de codage ASN.1: Spécification des
règles de codage de base (BER), des règles de codage canoniques (CER) et des règles de
codage distinctives (DER)

ISO/CEI 9545, Technologies de l'information – Interconnexion de systèmes ouverts (OSI) –
Structure de la couche Application

ISO/CEI 10731, Technologies de l'information – Interconnexion de systèmes ouverts –
Modèle de Référence de Base – Conventions pour la définition des services OSI

3 Définitions

Pour les besoins du présent document, les termes et définitions suivants s'appliquent.

3.1 Termes et définitions

3.1.1 Termes de l'ISO/CEI 7498-1

Pour les besoins du présent document, les termes suivants, définis dans l'ISO/CEI 7498-1,
s'appliquent:

a) entité d'application
b) unité de données de protocole d'application
c) élément de service d'application

3.1.2 Termes de l'ISO/CEI 8824-2

Pour les besoins du présent document, les termes suivants, définis dans l'ISO/CEI 8824,
s'appliquent:

a) type any (indifférent)
b) type bitstring (chaîne binaire)
c) type Boolean (booléen)
d) type choice (choix)
e) false (faux)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 80 – 61158-6-17 © CEI:2007

f) type integer (entier)
g) type null (vide)
h) type octetstring (chaîne d'octets)
i) type sequence of (séquence de)
j) type sequence (séquence)
k) type simple
l) type structuré
m) type tagged (étiqueté)
n) true (vrai)
o) type
p) valeur

3.1.3 Termes de l'ISO/CEI 10731
a) (N)-connection (connexion (N))
b) (N)-entity (entité (N))
c) (N)-layer (couche (N))
d) (N)-service (service (N))
e) (N)-service-access-point (point d'accès au service (N))
f) (primitive) confirm (confirmation)
g) (primitive) indication
h) (primitive) request (demande)
i) (primitive) response (réponse)

3.1.4 Autres termes et définitions

3.1.4.1
application
fonction ou structure de données pour laquelle des données sont consommées ou produites

3.1.4.2
processus d'application
partie d'une application distribuée sur un réseau, qui est située sur un appareil et adressée
sans ambiguïté

3.1.4.3
relation d'applications
association de type coopératif entre deux invocations d'entités d'application (application-
entity-invocation) ou plus, dans un but d'échange d'informations et de coordination de leur
action conjointe

NOTE Cette relation est activée soit par l'échange d'unités de données de protocole d'application (application-
protocol-data-unit), soit à la suite d'activités de préconfiguration.

3.1.5
élément de service d'application de relation d'applications
élément de service d'application (application-service-element) qui fournit le seul moyen
d'établir et de rompre toute relation d'applications

3.1.5.1
point d'extrémité de relation d'applications
contexte et comportement d'une relation d'applications, vus et maintenus par un des
processus d'application impliqués dans la relation d'applications

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © CEI:2007 – 81 –

NOTE Chaque processus d'application impliqué dans la relation d'applications maintient son propre point
d'extrémité de relation d'applications.

3.1.5.2
attribut
description d'une caractéristique ou fonction, visible par un observateur externe, d'un objet

NOTE Les attributs d'un objet contiennent des informations sur les portions variables d'un objet. En règle
générale, ils fournissent des informations de statut ou régissent l'action d'un objet. Les attributs peuvent également
influer sur le comportement d'un objet. Les attributs se répartissent en deux catégories: les attributs de classe et
les attributs d'instance.

3.1.5.3
comportement
indication de la manière dont un objet réagit à des événements particuliers

3.1.5.4
pont
équipement intermédiaire qui permet de connecter au moins deux segments grâce à une
fonction de relais de couche de liaison de données

3.1.5.5
canal
liaison physique ou logique unique d'un objet d'application d'entrée ou de sortie d'un serveur
avec le processus

3.1.5.6
classe
ensemble d'objets représentant le même type de composant du système

NOTE Une classe est une généralisation d'un objet, un modèle qui permet de définir des variables et des
méthodes. Tous les objets d'une classe possèdent une forme et un comportement identiques, mais leurs attributs
contiennent généralement des données différentes.

3.1.5.7
client
a) objet qui utilise les services d'un autre objet (serveur) pour réaliser une tâche
b) initiateur d'un message auquel un serveur réagit

3.1.5.8
connexion
liaison logique entre deux objets d'application qui peuvent se trouver au sein du même
appareil ou dans des appareils différents

NOTE 1 Les connexions peuvent être soit point à point, soit multipoint.

NOTE 2 La liaison logique entre puits et source d'attributs et de services au niveau des différentes interfaces
personnalisées des éléments ASE RT-Auto est appelée "interconnexion". Une distinction est faite entre
interconnexion de données et interconnexion d'événements. L'ensemble constitué de la liaison logique et du flux
de données entre le puits et la source d'éléments de données d'automation est appelé "interconnexion de
données". L'ensemble constitué de la liaison logique et du flux de données entre le puits (méthode) et la source
(événement) de services opérationnels est appelé "interconnexion d'événements".

3.1.5.9
point de connexion
tampon qui est représenté comme étant une sous-instance d'un objet Assembly (ensemble)

3.1.5.10
chemin de transport
flux unidirectionnel d'unités APDU à travers une relation d'applications

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 82 – 61158-6-17 © CEI:2007

3.1.5.11
AR dédiée
AR directement utilisée par l'utilisateur FAL

NOTE Dans les AR dédiées, seuls l'en-tête FAL et les données d'utilisateur sont transférés.

3.1.5.12
appareil
matériel physique connecté à la liaison

NOTE Un appareil peut contenir plusieurs nœuds.

3.1.5.13
domaine
portion du réseau RTE composée d'un ou deux sous-réseaux

NOTE Deux sous-réseaux sont nécessaires pour former un réseau RTE à double redondance et chaque nœud
d'extrémité du domaine est connecté à ces deux sous-réseaux.

3.1.5.14
maître de domaine
poste chargé du diagnostic des voies menant à tous les autres domaines, de la distribution du
temps réseau aux nœuds situés à l'intérieur du domaine, de l'acquisition du temps absolu
auprès du maître de temps réseau et de la notification du statut du domaine

3.1.5.15
numéro de domaine
identificateur numérique qui désigne un domaine

3.1.5.16
nœud d'extrémité
nœud producteur ou consommateur

3.1.5.17
point d'extrémité
une des entités en communication impliquées dans une connexion

3.1.5.18
erreur
divergence entre une valeur ou condition calculée, observée ou mesurée et la valeur ou
condition spécifiée ou théoriquement correcte

3.1.5.19
classe d'erreurs
groupement général de définitions d'erreurs proches et des codes d'erreur associés

3.1.5.20
pont externe
pont qui n'est directement connecté à aucun pont interne ni à aucun poste RTE

3.1.5.21
événement
instance d'un changement de conditions

3.1.5.22
groupe
a) <généralités> terme général désignant un ensemble d'objets. Usages spécifiques:
b) <adressage> dans la description d'une adresse, adresse qui identifie plusieurs entités

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © CEI:2007 – 83 –

3.1.5.23
interface
a) frontière commune entre deux unités fonctionnelles, définie par des caractéristiques

fonctionnelles, des caractéristiques de signal ou d'autres caractéristiques adaptées
b) ensemble d'attributs et de services de classe FAL représentant une vue spécifique de la

classe FAL

3.1.5.24
port d'interface
point de connexion physique d'un nœud d'extrémité, qui possède une adresse DL
indépendante

3.1.5.25
pont interne
pont qui n'est directement connecté à aucun routeur, pont externe ou nœud non conforme à
la présente spécification

3.1.5.26
invocation
acte d'utiliser un service ou une autre ressource d'un processus d'application

NOTE Chaque invocation représente un fil de commande distinct qui peut être décrit par son contexte. Une fois le
service terminé ou la ressource libérée, l'invocation cesse d'exister. Dans le cas des invocations de services, un
service lancé mais pas encore terminé est appelé "invocation de services en cours". Dans ce même cas, un ID
d'invocation peut être utilisé pour identifier sans ambiguïté l'invocation de services et la différencier des autres
invocations de services en cours.

3.1.5.27
pont de jonction
pont qui est connecté à au moins un routeur, pont externe ou nœud non conforme à la
présente spécification et à au moins un pont interne ou poste RTE

3.1.5.28
liaison
canal de communication physique qui sépare deux nœuds

3.1.5.29
méthode
<objet> synonyme d'un service opérationnel délivré par l'élément ASE serveur et appelé par
un client

3.1.5.30
réseau
ensemble de nœuds reliés par un support de communication d'un type ou d'un autre, avec
d'éventuels répéteurs, ponts, routeurs et passerelles de couche inférieure intermédiaires

3.1.5.31
maître de temps réseau
poste qui distribue le temps réseau aux maîtres de domaine

3.1.5.32
nœud
entité DL unique telle qu'elle se présente sur une liaison locale

3.1.5.33
nœud d'interface non redondant
nœud qui possède un seul port d'interface

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 84 – 61158-6-17 © CEI:2007

3.1.5.34
poste non redondant
poste composé d'un seul nœud d'extrémité

NOTE Les expressions “poste non redondant” et “nœud d'extrémité” sont synonymes.

3.1.5.35
objet
représentation abstraite d'un composant particulier dans un appareil; il s'agit généralement
d'un ensemble de données (sous la forme de variables) et de méthodes (procédures)
associées, destiné à l'exploitation des données dont l'interface et le comportement sont
clairement définis

3.1.5.36
émetteur
client chargé de l'établissement d'un chemin de connexion vers la cible

3.1.5.37
chemin
canal de communication logique qui sépare deux nœuds et se compose d'une ou
deux liaisons

3.1.5.38
homologue
rôle d'un point d'extrémité d'AR dans lequel il est capable d'agir à la fois comme client et
comme serveur

3.1.5.39
producteur
nœud chargé de l'envoi des données

3.1.5.40
fournisseur
source d'une connexion de données

3.1.5.41
éditeur
rôle d'un point d'extrémité d'AR qui transmet des unités APDU au bus de terrain afin qu'elles
soient consommées par un ou plusieurs abonnés

NOTE Un éditeur peut ne pas connaître l'identité des abonnés ni leur nombre; il peut publier ses unités APDU au
moyen d'une AR dédiée.

3.1.5.42
nœud d'interface redondant
nœud doté de deux ports d'interface dont l'un est connecté à un réseau primaire et l'autre à
un réseau secondaire

3.1.5.43
poste redondant
poste composé d'une paire de nœuds d'extrémité

NOTE Les nœuds d'extrémité d'un poste redondant possèdent tous le même numéro de poste, mais des
adresses DL différentes.

3.1.5.44
ressource
capacité de traitement ou d'information d'un sous-système

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © CEI:2007 – 85 –

3.1.5.45
poste RTE
poste conforme à la présente spécification

3.1.5.46
voie
canal de communication logique qui sépare deux nœuds d'extrémité de communication

3.1.5.47
routeur
équipement intermédiaire qui permet de connecter au moins deux sous-réseaux grâce à une
fonction de relais de couche Réseau

3.1.5.48
segment
canal de communication qui permet de connecter directement deux nœuds, sans faire
intervenir de pont

3.1.5.49
serveur
a) rôle d'un AREP dans lequel il renvoie une unité APDU de réponse de service confirmé au

client à l'origine de la demande
b) objet qui offre des services à un autre objet (client)

3.1.5.50
service
action ou fonction qu'un objet et/ou une classe d'objets exécutent à la demande d'un autre
objet et/ou une autre classe d'objets

3.1.5.51
poste
nœud d'extrémité ou paire de nœuds d'extrémité qui accomplit une fonction d'application
spécifique

3.1.5.52
numéro de poste
identificateur numérique qui désigne un poste RTE

3.1.5.53
sous-réseau
portion d'un réseau qui ne comporte aucun routeur. Un sous-réseau se compose de nœuds
d'extrémité, de ponts et de segments

NOTE Les nœuds d'extrémité inclus dans un sous-réseau possèdent tous la même adresse réseau IP.

3.1.5.54
abonné
rôle d'un AREP dans lequel il reçoit les unités APDU produites par un éditeur

3.2 Abréviations et symboles

3.2.1 Abréviations de l'ISO/CEI 10731
ASE élément de service d'application (Application-Service-Element)
OSI interconnexion de systèmes ouverts (Open Systems

Interconnection)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 86 – 61158-6-17 © CEI:2007

3.2.2 Abréviations et symboles de l'ISO/CEI 7498-1
DL- (comme préfixe) couche de liaison de données (Data-Link layer)
DLL couche DL (DL-Layer)
DLM gestion DL (DL-Management)
DLS service DL (DL-Service)
DLSAP point d'accès au service DL (DL-Service-Access-Point)
DLSDU unité de données de service DL (DL-Service-Data-Unit)

3.2.3 Abréviations et symboles de la CEI 61158-5-17
AE entité d'application (Application Entity)
AL couche d’application (Application Layer)
AP processus d'application (Application Process)
APDU unité de données de protocole d'application (Application Protocol Data

Unit)
AR relation d'applications (Application Relationship)
AREP point d'extrémité de relation d'applications (Application Relationship

EndPoint)
ASN.1 notation de syntaxe abstraite numéro un (Abstract Syntax Notation one)
BCD décimal codé binaire (Binary Coded Decimal)
Cnf confirmation
cnf primitive de confirmation
Ev_ préfixe des types de données définis pour l'élément ASE d'événement
FAL couche Application de bus de terrain (Fieldbus Application Layer)
Gn_ préfixe des types de données définis pour un usage général
ID identificateur
CEl Commission Electrotechnique Internationale
Ind indication
ind primitive d'indication
IP protocole Internet (Internet Protocol)
ISO Organisation internationale de normalisation
lsb bit de poids faible (least significant bit)
msb bit de poids fort (most significant bit)
PDU unité de données de protocole (Protocol Data Unit)
Req demande (Request)
req primitive de demande (request)
Rsp réponse (Response)
rsp primitive de réponse (response)
SAP point d'accès au service (Service Access Point)
SDU unité de données de service (Service Data Unit)

3.2.4 Autres abréviations et symboles
ARPM machine de protocole de relations d'applications (Application Relationship

Protocol Machine)
FSPM machine de protocole de service FAL (FAL Service Protocol Machine)
MSU-AR AREP éditeur/abonné de réseau multipoint planifié non

confirmé (Multipoint network-Scheduled Unconfirmed publisher/subscriber

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © CEI:2007 – 87 –

AREP)
MTU-AR AREP éditeur/abonné d'utilisateur multipoint déclenché non

confirmé (Multipoint user-Triggered Unconfirmed publisher/subscriber
AREP)

PSU-AR AREP client/serveur de réseau point à point planifié non confirmé (Point-
to-point network-Scheduled Unconfirmed client/server AREP)

PTC-AR AREP client/serveur d'utilisateur point à point déclenché confirmé (Point-
to-point user-Triggered Confirmed client/server AREP)

PTU-AR AREP client/serveur d'utilisateur point à point déclenché non
confirmé (Point-to-point user-Triggered Unconfirmed client/server AREP)

3.3 Conventions

3.3.1 Conventions générales

La présente norme utilise les conventions de description énoncées dans l'ISO/CEI 10731.

La présente norme utilise les conventions de description énoncées dans la sous-
série CEI 61158-5 pour les définitions de service FAL.

3.3.2 Conventions relatives aux définitions de syntaxe abstraite des unités APDU

La présente norme utilise les conventions de description énoncées dans l'ISO/CEI 8824-2
pour les définitions d'unité APDU.

3.3.3 Conventions relatives aux définitions de syntaxe de transfert des unités APDU

La présente norme utilise les conventions de description énoncées dans l'ISO/CEI 8825-1
pour les définitions de syntaxe de transfert.

3.3.4 Conventions relatives aux définitions de diagramme d'états d'entité AE

Le Tableau 1 décrit les conventions utilisées pour les définitions de diagramme d'états
d'entité AE.

Tableau 1 – Conventions utilisées pour les définitions de diagramme d'états d'entité AE

N° État actuel Événement/condition => action État suivant

Nom de ce
passage

État actuel
auquel
s'applique ce
passage d'état

Événements ou conditions déclenchant ce
passage d'état.
=>
Actions effectuées lorsque les événements
ou conditions ci-dessus sont réunis. Elles
figurent toujours au-dessous des événements
ou conditions et sont toujours présentées
avec un retrait

État suivant
dans lequel
passe le
diagramme
d'états une fois
les actions de
ce passage
effectuées

Les conventions utilisées dans les descriptions d'événements, de conditions et d'actions sont
les suivantes:

:= La valeur d'un élément, à gauche, est remplacée par la valeur d'un élément, à droite. Si
un élément à droite est un paramètre, il provient de la primitive indiquée comme
événement d'entrée.

xxx Indique le nom du paramètre.
Exemple:

Identifier := reason

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 88 – 61158-6-17 © CEI:2007

signifie que la valeur du paramètre "reason" est attribuée au paramètre
appelé "Identifier".

"xxx" Indique une valeur fixe.

Exemple:
Identifier := “abc”
signifie que la valeur "abc" est attribuée à un paramètre appelé "Identifier".

= Condition logique indiquant qu'un élément à gauche est égal à un élément à droite.
< Condition logique indiquant qu'un élément à gauche est inférieur à l'élément à droite.
> Condition logique indiquant qu'un élément à gauche est supérieur à l'élément à droite.
<> Condition logique indiquant qu'un élément à gauche est différent d'un élément à droite.
&& Indique le "ET" logique.
|| Indique le "OU" logique.

La séquence d'actions et les actions de remplacement peuvent être exécutées au moyen des
mots réservés suivants:

for
endfor
if
else
elseif

Les exemples ci-dessous décrivent l'utilisation des mots réservés.
Exemple 1:

for (Identifier := valeur_début to valeur_fin)
actions

endfor
Exemple 2:

If (condition)
actions

else
actions

endif

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © CEI:2007 – 89 –

4 Description de la syntaxe abstraite

4.1 Syntaxe abstraite des unités PDU de couche FAL

4.1.1 Définition de premier niveau
FalArPDU ::=
 ConfirmedSend-CommandPDU
 || ConfirmedSend-ResponsePDU
 || UnconfirmedSend-CommandPDU

4.1.2 En-tête FalArHeader
FalArHeader ::= Unsigned8{
 -- bits 8 à 7 ProtocolVersion
 -- bits 6 à 4 ProtocolIdentifier
 -- bits 3 à 1 PDUIdentifier
}

4.1.3 Service d'envoi confirmé
ConfirmedSend-CommandPDU ::= SEQUENCE {
 FalArHeader,
 ServiceType
 InvokeID,
 ConfirmedServiceRequest
}

ConfirmedSend-ResponsePDU ::= SEQUENCE {
 FalArHeader,
 ServiceType
 InvokeID,
 ConfirmedServiceResponse
}

4.1.4 Service d'envoi non confirmé
UnconfirmedSend-CommandPDU ::= SEQUENCE {
 FalArHeader,
 ServiceType
 InvokeID,
 UnconfirmedServiceRequest
}

4.2 Syntaxe abstraite du corps des unités PDU

4.2.1 Unités PDU de demande de service confirmé
ConfirmedServiceRequest ::= CHOICE {
 Read-Request [0] IMPLICIT Read-RequestPDU,
 Write-Request [1] IMPLICIT Write-RequestPDU,
 DownLoad-Request [2] IMPLICIT DownLoad-RequestPDU,
 UpLoad-Request [3] IMPLICIT UpLoad-RequestPDU,
 Start-Request [4] IMPLICIT Start-RequestPDU,
 Stop-Request [5] IMPLICIT Stop-RequestPDU,
 Resume- Request [6] IMPLICIT Resume-RequestPDU,
 DelayCheck-Request [7] IMPLICIT Time- RequestPDU,
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 90 – 61158-6-17 © CEI:2007

4.2.2 Unités PDU de réponse de service confirmé
ConfirmedServiceResponse ::= CHOICE {
 Read-Response [0] IMPLICIT Read-ResponsePDU,
 Write-Response [1] IMPLICIT Write-ResponsePDU,
 DownLoad-Response [2] IMPLICIT DownLoad-ResponsePDU,
 UpLoad-Response [3] IMPLICIT UpLoad-ResponsePDU,
 Start-Response [4] IMPLICIT Start-ResponsePDU,
 Stop-Response [5] IMPLICIT Stop-ResponsePDU,
 Resume-Response [6] IMPLICIT Resume-ResponsePDU,
 DelayCheck-Response [7] IMPLICIT Time-ResponsePDU
}

4.2.3 Unités PDU non confirmées
UnconfirmedServiceRequest ::= CHOICE {
 InformationReport-Request [0] IMPLICIT InformationReport-RequestPDU,
 EventNotification-Request [1] IMPLICIT EventNotification-RequestPDU,
 EventRecovery-Request [2] IMPLICIT EventRecovery-RequestPDU,
 TimeDistribution-Request [3] IMPLICIT TimeDistribute-RequestPDU,
 SetTime-Request [4] IMPLICIT SetTime-RequestPDU,
 InDiag-Request [5] IMPLICIT InDiag-RequestPDU,
 ExDiag-Request [6] IMPLICIT ExDiag-RequestPDU,
 StationStatusReport-Request [7] IMPLICIT StationStatusReport-RequestPDU,
 DomainStatusReport-Request [8] IMPLICIT DomainStatusReport-RequestPDU
}

4.2.4 Informations d'erreur

4.2.4.1 Type d'erreur
ErrorType ::= SEQUENCE {
 errorClass [0] IMPLICIT ErrorClass,
 additionalCode [1] IMPLICIT Integer16 OPTIONAL,
 additionalDescription [2] IMPLICIT VisibleString OPTIONAL,
 additionalInfo [3] IMPLICIT ANY OPTIONAL
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © CEI:2007 – 91 –

4.2.4.2 Classe d'erreurs
ErrorClass ::= CHOICE {
 noError [0] IMPLICIT Integer8 {
 normal (0),
 other (1)
 }
 applicationReference [1] IMPLICIT Integer8 {
 other (0),
 application-unreachable (1),
 application-reference-invalid (2),
 context-unsupported (3)
 }
 definition [2] IMPLICIT Integer8 {
 other (0),
 object-undefined (1),
 object-attributes-inconsistent (2),
 name-already-exists (3),
 type-unsupported (4),
 type-inconsistent (5)
 }
 resource [3] IMPLICIT Integer8 {
 other (0),
 memory-unavailable (1)
 }
 service [4] IMPLICIT Integer8 {
 other (0),
 object-state-conflict (1),
 pdu-size (2),
 object-constraint-conflict (3),
 parameter-inconsistent (4),
 illegal-parameter (5)
 }
 access [5] IMPLICIT Integer8 {
 other (0),
 object-invalidated (1),
 hardware-fault (2),
 object-access-denied (3),
 invalid-address (4),
 object-attribute-inconsistent (5),
 object-access-unsupported (6),
 object-non-existent (7),
 type-conflict (8),
 named-access-unsupported (9),
 access-to-element-unsupported (10)
 }
 conclude [6] IMPLICIT Integer8 {
 other (0)
 }
 other [7] IMPLICIT Integer8 {
 other (0)
 }
}

4.3 Unités PDU destinées aux éléments ASE

4.3.1 Unités PDU destinées à l'élément ASE de variable

4.3.1.1 Unités PDU de service de lecture
Read-RequestPDU ::= SEQUENCE {
 objectSpecifier CHOICE{
 variableSpecifier Gn_KeyAttribute,
 variableListSpecifier Gn_KeyAttribute,
 listOfvariable SEQUENCE OF Gn_KeyAttribute
 }
 optionalParameters [0] IMPLICIT ANY OPTIONAL
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 92 – 61158-6-17 © CEI:2007

Read-ResponsePDU ::= SEQUENCE {
 result CHOICE{
 accessStatus [0] IMPLICIT ErrorType,
 listOfAccessStatus [1] IMPLICIT SEQUENCE OF ErrorType
 }
 value CHOICE{
 data [0] IMPLICIT ANY,
 listOfData [1] IMPLICIT SEQUENCE OF ANY
 }
 variableType CHOICE{
 dataType [0] IMPLICIT Gn_FullyNestedTypeDescription OPTIONAL,
 listOfDataType [1] IMPLICIT SEQUENCE OF Gn_FullyNestedTypeDescription

OPTIONAL

 }
 optionalParameters [0] IMPLICIT ANY OPTIONAL
}

4.3.1.2 Unités PDU de service d'écriture
Write-RequestPDU ::= SEQUENCE {
 objectSpecifier CHOICE{
 variableSpecifier Gn_KeyAttribute,
 variableListSpecifier Gn_KeyAttribute,
 listOfVariable SEQUENCE OF Gn_KeyAttribute
 }
 variableType CHOICE{
 dataType [0] IMPLICIT Gn_FullyNestedTypeDescription OPTIONAL,
 listOfDataType [1] IMPLICIT SEQUENCE OF Gn_FullyNestedTypeDescription

OPTIONAL

 }
 value CHOICE{
 data [0] IMPLICIT ANY,
 listOfData [1] IMPLICIT SEQUENCE OF ANY
 }
 optionalParameters [0] IMPLICIT ANY OPTIONAL
}

Write-ResponsePDU ::= SEQUENCE {
 result CHOICE{
 accessStatus [0] IMPLICIT ErrorType,
 listOfAccessStatus [1] IMPLICIT SEQUENCE OF ErrorType
 }
 optionalParameters [0] IMPLICIT ANY OPTIONAL
}

4.3.1.3 Unités PDU de service de transmission d'informations
InformationReport-RequestPDU::= SEQUENCE {
 ListOfVariableSpecifier CHOICE {
 variableListSpecifier Gn_KeyAttribute,
 listOfVariable SEQUENCE OF Gn_KeyAttribute
 },
 listOfDataType [1] IMPLICIT SEQUENCE OF Gn_FullyNestedTypeDescription

OPTIONAL

 listOfData [2] IMPLICIT SEQUENCE OF ANY
 optionalParameters [3] IMPLICIT ANY OPTIONAL
}

4.3.2 Unités PDU destinées à l'élément ASE d'événement

4.3.2.1 Service de notification d'événement
EventNotification-RequestPDU ::= SEQUENCE {
 eventNotifierID IMPLICIT Gn_ KeyAttribute,,
 notificvationSequenceNumber [1] IMPLICIT Ev_SequenceNumber,
 listOfEvent [2] IMPLICIT SEQUENCE OF Ev_EventData,
 Notification Time [3] IMPLICIT Ev_TimeTag OPTIONAL
 optionalParameters [4] IMPLICIT ANY OPTIONAL
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © CEI:2007 – 93 –

4.3.2.2 Service de récupération de notification
EventRecovery-RequestPDU ::= SEQUENCE {
 eventNotifierID IMPLICIT Gn_ KeyAttribute,,
 sequenceNumber [1] IMPLICIT Ev_SequenceNumber OPTIONAL
}

4.3.3 Unités PDU destinées à l'élément ASE de région de charge

4.3.3.1 Service de téléchargement
DownLoad-RequestPDU ::= SEQUENCE {
 loadRegionKeyAttribute Gn_KeyAttribute,
 segmentIdentifier [1] IMPLICIT ANY,
 loadData [2] IMPLICIT octetString,
}

DownLoad-ResponsePDU ::= SEQUENCE {
 loadRegionKeyAttribute Gn_KeyAttribute,
 result [1] IMPLICIT ErrorType,
}

4.3.3.2 Service de chargement
UpLoad-RequestPDU ::= SEQUENCE {
 loadRegionKeyAttribute Gn_KeyAttribute,
 segmentIdentifier [1] IMPLICIT ANY,
}

UpLoad-ResponsePDU ::= SEQUENCE {
 loadRegionKeyAttribute Gn_KeyAttribute,
 result [1] IMPLICIT ErrorType,
 loadData [2] IMPLICIT octetString,
}

4.3.4 Unités PDU destinées à l'élément ASE d'invocation de fonctions

4.3.4.1 Service de démarrage
Start-RequestPDU ::= SEQUENCE {
 keyAttribute Gn_KeyAttribute,
 optionalParameters [1] IMPLICIT ANY OPTIONAL
}

Start-ResponsePDU ::= ErrorType

4.3.4.2 Service d'arrêt
Stop-RequestPDU ::= SEQUENCE {
 keyAttribute Gn_KeyAttribute,
 optionalParameters [1] IMPLICIT ANY OPTIONAL
}

Stop-ResponsePDU ::= ErrorType

4.3.4.3 Services de reprise
Resume-RequestPDU ::= SEQUENCE {
 keyAttribute Gn_KeyAttribute,
 optionalParameters [1] IMPLICIT ANY OPTIONAL
}

Resume-ResponsePDU ::= ErrorType

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 94 – 61158-6-17 © CEI:2007

4.3.5 Unités PDU destinées à l'élément ASE de temps

4.3.5.1 Service de temps
Time-RequestPDU ::= Time-PDU

Time-ResponsePDU ::= Time-PDU

TimeDistribute-RequestPDU ::= Time-PDU

Time-PDU ::= SEQUENCE {
 timeControl [0] IMPLICIT Tm_TimeControl,
 Stratum [1] IMPLICIT Unsigned8
 PollInterval [2] IMPLICIT Tm_TimeValue1,
 Precision [3] IMPLICIT Tm_TimeValue1,
 rootDelay [4] IMPLICIT Tm_TimeValue2,
 rootDispersion [5] IMPLICIT Tm_TimeValue2,
 referenceIdentifier [6] IMPLICIT Tm_ReferenceID,
 referenceTimestamp [7] IMPLICIT Tm_Time,
 originateTimestamp [8] IMPLICIT Tm_Time,
 receiveTimestamp [9] IMPLICIT Tm_Time,
 transmitTimestamp [10] IMPLICIT Tm_Time,
}

SetTime-RequestPDU ::= SEQUENCE {
 timeValue [0] IMPLICIT Tm_Time,
 optionalParameters [1] IMPLICIT ANY OPTIONAL
}

4.3.6 Unités PDU destinées à l'élément ASE de gestion de réseau

4.3.6.1 Service de gestion de réseau
InDiag-RequestPDU ::= SEQUENCE {
 nodeInformation [0] IMPLICIT Nm_NodeInformation,
 nodeStatus [1] IMPLICIT Nm_NodeStatus,
 nodePublicKey [2] IMPLICIT Nm_PublicKey,
 llistOfPathStatus [3] IMPLICIT Nm_ListOfPathStatus
}

ExDiag-RequestPDU ::= SEQUENCE {
 doaminInformation [0] IMPLICIT Nm_DoaminInformation,
 domainStatus [1] IMPLICIT Nm_DoaminStatus,
 domainPublicKey [2] IMPLICIT Nm_PublicKey,
 masterPriority [3] IMPLICIT Unsigned8,
 llistOfPathStatus [4] IMPLICIT Nm_ListOfPathStatus,
 listOfNodeStatus [5] IMPLICIT SEQUENCE OF Nm_NodeStatus
}

StationStatusReport-RequestPDU ::= SEQUENCE {
 nodeInformation [0] IMPLICIT Nm_NodeInformation,
 nodeStatus [1] IMPLICIT Nm_NodeStatus
}

DomainStatusReport-RequestPDU ::= SEQUENCE {
 doaminInformation [0] IMPLICIT Nm_DoaminInformation,
 domainStatus [1] IMPLICIT Nm_DomainStatus
}

4.4 Définition des types

4.4.1 Types d'élément ASE de variable

Il n'existe aucun type spécial pour l'élément ASE de variable.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © CEI:2007 – 95 –

4.4.2 Types d'élément ASE d'événement
Ev_SequenceNumber ::= Unsigned8

Ev_EventData ::= ANY

En_EventCount ::= Unsigned8

Ev_TimeTag ::= Unsigned16

4.4.3 Types d'élément ASE de région de charge

Il n'existe aucun type spécial pour l'élément ASE de région de charge.

4.4.4 Types d'élément ASE d'invocation de fonctions

Il n'existe aucun type spécial pour l'élément ASE d'invocation de fonctions.

4.4.5 Types d'élément ASE de temps
Tm_TimeControl ::= BitString8 {
 -- bits 8 à 7 LeapIndidator
 -- bits 6 à 4 ProtocolVersion
 -- bits 3 à 1 TimeMode
}

Tm_TimeValue1 ::= Unsigned32 -- entier signé de 8 bits, en secondes par rapport à la puissance de 2 la

plus proche

Tm_TimeValue2 ::= Unsigned32 -- nombre en virgule fixe signé de 32 bits, en secondes,

-- la virgule fractionnaire étant placée entre le bit 15 et le bit 16

Tm_ReferenceID ::= VisibleString4 -- identifie la source de référence concernée

Tm_Time ::= SEQUENCE{
 Seconds [0] Unsigned32
 SecondsFraction [2] Unsigned32
}

4.4.6 Types d'élément ASE de gestion de réseau
Nm_NodeInformation ::= SEQUENCE {
 NodeIdentifier [0] IMPLICIT Nm_NodeIdentifier,
 NoOfInterfaces [1] IMPLICIT Integer8,
 InterfaceID [2] IMPLICIT Unsigned8,
 PerformanceClass SEQUENCE {
 MasterPriority [11] IMPLICIT Unsigned8,
 TransmissionClass [12] IMPLICIT Unsigned8,
 ResponseClass [13] IMPLICIT Unsigned8,
 TimePrecisionLevel [14] IMPLICIT Unsigned8,
 }
 configurationSUM [4] IMPLICIT Unsigned32,
 localNodeTime [5] IMPLICIT Tm_Time,
 diagInterval [6] IMPLICIT BinaryTime2,
 stationCoefficeincy [7] IMPLICIT Unsigned16
}

Nm_NodeStatus ::= BitString8 {
 -- bit 8 CPU-Status -- True: prêt, False: non prêt
 -- bit 7 communication-status -- True: prêt, False: non prêt
 -- bit 6 reserved-status -- True: réservé, False: non réservé
 -- bit 5 redundancy-status -- True: en service, False: en attente
 -- bit 4 linkStatusOfnterfaceB -- True: lié, False: non lié
 -- bit 3 linkStatusOfnterfaceA -- True: lié, False: non lié
 -- bit 2 statusOfNetworkB -- True: sain, False: défaillant
 -- bit 1 statusOfNetworkA -- True: sain, False: défaillant

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 96 – 61158-6-17 © CEI:2007

}

Nm_PublicKey ::= Unsigned64

Nm_ListOfPathStatus ::= CompactBooleanArray -- True: sain, False: défaillant

Nm_DoaminInformation ::= SEQUENCE {
 NodeIdentifier [0] IMPLICIT Nm_NodeIdentifier,
 NoOfInterfaces [1] IMPLICIT Integer8,
 InterfaceID [2] IMPLICIT Unsigned8,
 localNodeTime [3] IMPLICIT Tm_Time,
 diagInterval [4] IMPLICIT BinaryTime2,
}

Nm_DomainStatus ::= BitString8 {
 -- bit 8 statusOfNetworkB -- True: sain, False: défaillant
 -- bit 7 statusOfNetworkA -- True: sain, False: défaillant
 -- bits 6 à 5 StatusOfTimeSynchronization -- 00: non synchronisé

-- 01: synchronisé avec le maître de temps domaine
-- 10: synchronisé avec le maître de temps réseau
-- 11: synchronisé avec la source de temps externe

 -- bits 4 à 1 TimeGroup
}

Nm_NodeIdentifier ::= SEQUENCE {
 DomainNumber [0] IMPLICIT Integer8,
 StationNumber [1] IMPLICIT Integer8
}

4.4.7 Types généraux

4.4.7.1 Gn_KeyAttribute
Gn_KeyAttribute ::= CHOICE {
-- Lorsque ce type est spécifié, seuls les attributs clés de la classe référencée sont valides.
 numericID [0] IMPLICIT Gn_NumericID,
 name [1] IMPLICIT Gn_Name,
 listName [2] IMPLICIT Gn_Name,
 numericAddress [4] IMPLICIT Gn_NumericAddress,
 symbolicAddress [5] IMPLICIT Gn_SymbolicAddress
}

4.4.7.2 Gn_Name
Gn_Name ::= octetString

4.4.7.3 Gn_NumericAddress
Gn_NumericAddress ::= SEQUENCE {
 startAddress [0] IMPLICIT Unsigned32, -- adresse physique de l'emplacement de

départ
 length [1] IMPLICIT Unsigned16 -- longueur en octets d'un bloc mémoire
}

4.4.7.4 Gn_NumericID
Gn_NumericID ::= Unsigned16 -- Les valeurs de ce paramètre sont uniques au sein d'un AP.

4.4.7.5 Gn_SymbolicAddress
Gn_SymbolicAddress ::= VisibleString

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © CEI:2007 – 97 –

4.4.7.6 Gn_FullyNestedTypeDescription
Gn_FullyNestedTypeDescription ::= CHOICE {
 boolean [1] Unsigned8,
 integer8 [2] Unsigned8,
 integer16 [3] Unsigned8,
 integer32 [4] Unsigned8,
 unsigned8 [5] Unsigned8,
 unsigned16 [6] Unsigned8,
 unsigned32 [7] Unsigned8,
 float32 [8] Unsigned8,
 float64 [9] Unsigned8,
 binaryDate [10] Unsigned8,
 timeOfDay [11] Unsigned8,
 timeDifference [12] Unsigned8,
 universalTime [13] Unsigned8,
 fieldbusTime [14] Unsigned8,
 time [15] Unsigned8,
 bitstring8 [16] Unsigned8,
 bitstring16 [17] Unsigned8,
 bitstring32 [18] Unsigned8,
 visiblestring1 [19] Unsigned8,
 visiblestring2 [20] Unsigned8,
 visiblestring4 [21] Unsigned8,
 visiblestring8 [22] Unsigned8,
 visiblestring16 [23] Unsigned8,
 octetstring1 [24] Unsigned8,
 octetstring2 [25] Unsigned8,
 octetstring4 [26] Unsigned8,
 octetstring8 [27] Unsigned8,
 octetstring16 [28] Unsigned8,
 bcd [29] Unsigned8,
 iso10646char [30] Unsigned8,
 binarytime0 [31] Unsigned8,
 binarytime1 [32] Unsigned8,
 binarytime2 [33] Unsigned8,
 binarytime3 [34] Unsigned8,
 binarytime4 [35] Unsigned8,
 binarytime5 [36] Unsigned8,
 binarytime6 [37] Unsigned8,
 binarytime7 [38] Unsigned8,
 binarytime8 [39] Unsigned8,
 binarytime9 [40] Unsigned8,
 visiblestring [41] Unsigned8,
 octetstring [42] Unsigned8,
 bitstring [43] Unsigned8,
 compactBooleanArray [44] Unsigned8,
 compactBCDArray [45] Unsigned8,
 iso646string [46] Unsigned8,
 structure [47] IMPLICIT SEQUENCE OF Gn_FullyNestedTypeDescription
}

4.5 Types de données

4.5.1 Notation du type Boolean
Boolean ::= BOOLEAN -- TRUE si la valeur est non nulle.
 -- FALSE si la valeur est nulle.

4.5.2 Notation du type Integer
Integer ::= INTEGER -- n'importe quel entier
Integer8 ::= INTEGER (-128..+127) -- -27 <= i <= 27-1
Integer16 ::= INTEGER (-32768..+32767) -- -215 <= i <= 215-1
Integer32 ::= INTEGER -- -231 <= i <= 231-1

4.5.3 Notation du type Unsigned
Unsigned ::= INTEGER -- n'importe quel entier naturel
Unsigned8 ::= INTEGER (0..255) -- 0 <= i <= 28-1
Unsigned16 ::= INTEGER (0..65535) -- 0 <= i <= 216-1
Unsigned32 ::= INTEGER -- 0 <= i <= 232-1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 98 – 61158-6-17 © CEI:2007

4.5.4 Notation du type Floating Point
Floating32 ::= BIT STRING SIZE (4) -- CEI 60559 simple précision
Floating64 ::= BIT STRING SIZE (8) -- CEI 60559 double précision

4.5.5 Notation du type BitString
BitString ::= BIT STRING -- Usage général
BitString4 ::= BIT STRING SIZE (4) -- Chaîne binaire fixe de 4 bits
BitString8 ::= BIT STRING SIZE (8) -- Chaîne binaire fixe de 8 bits
BitString16 ::= BIT STRING SIZE (16) -- Chaîne binaire fixe de 16 bits
BitString32 ::= BIT STRING SIZE (32) -- Chaîne binaire fixe de 32 bits

4.5.6 Notation du type octetString
octetString ::= OCTET STRING -- Usage général
octetString2 ::= OCTET STRING SIZE (2) -- Chaîne d'octets fixe de 2 octets
octetString4 ::= OCTET STRING SIZE (4) -- Chaîne d'octets fixe de 4 octets
octetString6 ::= OCTET STRING SIZE (6) -- Chaîne d'octets fixe de 6 octets
octetString7 ::= OCTET STRING SIZE (7) -- Chaîne d'octets fixe de 7 octets
octetString8 ::= OCTET STRING SIZE (8) -- Chaîne d'octets fixe de 8 octets
octetString16 ::= OCTET STRING SIZE (16) -- Chaîne d'octets fixe de 16 octets

4.5.7 Notation du type VisibleString
VisibleString2 ::= VisibleString SIZE (2) -- Chaîne visible fixe de 2 octets
VisibleString4 ::=VisibleString SIZE (4) -- Chaîne visible fixe de 4 octets
VisibleString8 ::= VisibleString SIZE (8) -- Chaîne visible fixe de 8 octets
VisibleString16 ::= VisibleString SIZE (16) -- Chaîne visible fixe de 16 octets

4.5.8 Notation du type UNICODEString
UNICODEString ::= UNICODEString -- Jeu de codes de caractères de 16 bits défini dans l'ISO 10646.

4.5.9 Notation du type BinaryTime
BinaryTime0 ::= BIT STRING SIZE (16) -- Résolution de 10 µs
BinaryTime1 ::= BIT STRING SIZE (16) -- Résolution de 0,1 ms
BinaryTime2 ::= BIT STRING SIZE (16) -- Résolution d'1 ms
BinaryTime3 ::= BIT STRING SIZE (16) -- Résolution de 10 ms
BinaryTime4 ::= BIT STRING SIZE (16) -- Résolution de 0,1 s
BinaryTime5 ::= BIT STRING SIZE (16) -- Résolution d'1 s
BinaryTime6 ::= BIT STRING SIZE (32) -- Résolution de 10 µs
BinaryTime7 ::= BIT STRING SIZE (32) -- Résolution de 0,1 ms
BinaryTime8 ::= BIT STRING SIZE (32) -- Résolution d'1 ms
BinaryTime9 ::= BIT STRING SIZE (32) -- Résolution de 10 ms

4.5.10 Notation du type BCD
BCD ::= Unsigned8 (0..9) -- Les 4 bits inférieurs permettent d'exprimer une seule

valeur BCD.

4.5.11 Notation du type CompactBooleanArray
CompactBooleanArray ::= BitString -- Chaque bit de valeur 0 représente la valeur booléenne FALSE.
 -- Chaque bit de valeur 1 représente la valeur booléenne TRUE.
 -- Les bits non utilisés, le cas échéant, doivent être placés sur les

bits 7 à 1 du dernier octet.

4.5.12 Notation du type CompactBCDArray
CompactBCDArray ::= octetString -- Une valeur BCD est représentée par 4 bits; tout
 -- quartet non utilisé, le cas échéant, doit être placé sur les bits 4

à 1 du dernier octet
 -- et défini sur 1111F.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © CEI:2007 – 99 –

5 Syntaxe de transfert

5.1 Vue d'ensemble du codage

Les unités PDU FAL codées doivent posséder un format uniforme. Les unités PDU FAL
doivent se composer de deux parties principales, la partie "En-tête d'unité APDU" et la
partie "Corps d'unité APDU", comme illustré à la Figure 1.

(1) (1) (1) (n) --- octets

Champ FalArHeader Champ Type (InvokeID) Paramètres spécifiques au service
<------------------- En-tête d'unité APDU ---------------> <--------------- Corps d'unité APDU --------------->

NOTE La présence du champ InvokeID dépend du type de l'unité APDU.

Figure 1 – Vue d'ensemble d'une unité APDU

Pour réaliser une unité APDU efficace tout en maintenant la flexibilité du codage, des règles
de codage différentes sont utilisées pour les parties en-tête d'unité APDU et corps
d'unité APDU.

NOTE Le service de couche de liaison de données propose un paramètre DLSDU qui définit la longueur de
l'unité APDU. Les informations relatives à la longueur de l'unité APDU ne sont donc pas incluses dans
l'unité APDU elle-même.

5.2 Codage de l'en-tête des unités APDU

La partie en-tête d'unité APDU est toujours présente dans toutes les unités APDU conformes
à la présente norme. Elle se compose de trois champs: le champ FalArHeader, le
champ Type et le champ InvokeID, qui est facultatif.

Ils sont décrits à la Figure 1.

5.2.1 Codage du champ FalArHeader

Toutes les unités PDU de couche FAL doivent posséder un en-tête d'unité PDU commun
appelé FalArHeader. FalArHeader identifie la syntaxe abstraite, la syntaxe de transfert, ainsi
que chacune des unités PDU. Le Tableau 2 définit la manière dont cet en-tête doit être utilisé.

Tableau 2 – Codage du champ FalArHeader

Position binaire de
FalArHeader Type d'unité PDU Version de protocole

8 7 6 5 4 3 2 1
01 001 000 ConfirmedSend-CommandPDU Version 1
01 001 100 ConfirmedSend-ResponsePDU Version 1
01 010 000 UnconfirmedSend-CommandPDU Version 1

NOTE Tous les autres points de code sont réservés en vue de l'ajout de protocoles supplémentaires et de
révisions futures.

5.2.2 Codage du champ Type
a) Le type de service d'une unité APDU est codé dans le champ Type; ce dernier

correspond toujours au deuxième octet des unités APDU.
b) Tous les bits du champ Type permettent de coder le type de service.

1) Les types de service doivent être codés sur les bits 8 à 1 du champ Type, le bit 8
correspondant au bit de poids fort et le bit 1 au bit de poids faible. Le type de service
doit être compris entre 0 (zéro) et 254 inclus.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 100 – 61158-6-17 © CEI:2007

2) La valeur 255 est réservée en vue d'extensions futures de la présente spécification.
3) Le type de service est spécifié dans la syntaxe abstraite sous la forme d'une valeur

entière positive.
c) La Figure 2 illustre le codage du champ Type.

8 7 6 5 4 3 2 1

Type de service

Figure 2 – Champ Type

5.2.3 Codage du champ InvokeID

Le champ InvokeID doit être présent s'il est indiqué dans la syntaxe abstraite. Dans le cas
contraire, il ne doit pas être présent. Si ce champ est présent, il doit recevoir le
paramètre InvokeID fourni par une primitive de service.

5.3 Codage du corps des unités APDU

5.3.1 Généralités

Les règles de codage de la couche FAL sont basées sur les termes et conventions définis
dans l'ISO/CEI 8825-1. Le codage comprend trois composants, qui s'enchaînent dans l'ordre
suivant:

 composant octet d'identification;
 composant octet(s) de longueur;
 composant octet(s) de contenu.
5.3.2 Composant octet d'identification

Le composant octet d'identification doit coder l'étiquette définie dans la syntaxe abstraite de
la couche FAL et se composer d'un seul octet.

Il comprend l'indicateur P/C et le champ Tag, comme illustré à la Figure 3.

8 7 6 5 4 3 2 1

P/C Champ Tag

Figure 3 – Composant octet d'identification

L'indicateur P/C indique que le composant octet(s) de contenu correspond soit à un
composant simple (types primitifs; par exemple, Integer8), soit à un composant structuré
(types construits; par exemple, SEQUENCE ou SEQUENCE OF).

Si indicateur P/C = 0, le composant octet(s) de contenu correspond à un composant simple.
Si indicateur P/C = 1, le composant octet(s) de contenu correspond à un composant structuré.

Le champ Tag identifie la sémantique du composant octet(s) de contenu.

5.3.3 Composant octet(s) de longueur

Le composant octet(s) de longueur doit se composer d'un ou de trois octets.

a) Si la valeur du premier octet de longueur est différente de 255, aucun octet de longueur
ne doit suivre et le premier octet doit contenir la valeur de l'octet de longueur défini
ultérieurement.

b) Si la valeur du premier octet de longueur est 255, deux octets de longueur doivent suivre
et ils doivent contenir la valeur des octets de longueur définis ultérieurement. Dans ce cas,

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © CEI:2007 – 101 –

les informations de longueur du composant octet(s) de contenu doivent être représentées
par les deux derniers octets du composant octet(s) de longueur, le bit de poids fort du
deuxième des trois octets de longueur devant correspondre au bit de poids fort de la
valeur de longueur et le bit de poids faible du troisième des trois octets de longueur
devant correspondre au bit de poids faible de la valeur de longueur.

L'expéditeur doit avoir la possibilité de choisir entre le format à un octet et le format à
trois octets. Par exemple, le format à trois octets peut être utilisé pour transmettre une valeur
de longueur de un.

La signification du composant octet(s) de longueur dépend du type de valeur codé. Si le
codage du composant octet(s) de contenu est primitif, le composant octet(s) de longueur doit
contenir le même nombre d'octets que le composant octet(s) de contenu. Si le codage du
composant octet(s) de contenu est construit, le composant octet(s) de longueur doit contenir
le nombre des composants de premier niveau du composant octet(s) de contenu.

La Figure 4 et la Figure 5 présentent des exemples de codage du composant octet(s) de
longueur.

8 7 6 5 4 3 2 1

(msb) valeur de l'octet de longueur défini ci-dessus (lsb)

Figure 4 – Octet de longueur (format à un octet)

1er octet 15 deuxième et troisième octets 1

11111111 (msb) valeur des octets de longueur définis ci-dessus (lsb)

Figure 5 – Octets de longueur (format à trois octets)

5.3.4 Composant octet(s) de contenu

Le composant octet(s) de contenu doit coder la valeur de donnée selon la règle de codage
définie pour son type.

Le codage du composant octet(s) de contenu doit prendre l'une des deux formes suivantes:
codage primitif ou codage construit.

a) Si le composant octet(s) de contenu contient un codage primitif, il représente un codage
d'une seule valeur.

b) Si le composant octet(s) de contenu contient un codage construit, il représente un codage
énuméré de plusieurs valeurs.

5.4 Règles de codage des types de données

5.4.1 Généralités

5.4.1.1 Boolean

Une valeur Boolean doit être codée comme suit:

a) Le composant octet d'identification et le composant octet(s) de longueur ne doivent pas
être présents.

b) Le composant octet(s) de contenu se compose toujours d'un seul octet. Si la
valeur Boolean est égale à FALSE, tous les bits de l'octet sont définis sur 0. Si la
valeur Boolean est égale à TRUE, l'octet peut contenir n'importe quelle combinaison de
bits à l'exception du codage de FALSE.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 102 – 61158-6-17 © CEI:2007

5.4.1.2 Integer

Une valeur Integer doit être codée comme suit:

a) Le composant octet d'identification ne doit pas être présent.
b) Le composant octet(s) de longueur ne doit pas être présent si la taille de la valeur Integer

est invariable. Un entier de taille invariable est créé en forçant la valeur possible. Le
composant octet(s) de longueur doit être présent si la taille de la valeur Integer est
variable.

c) Le composant octet(s) de contenu doit contenir le nombre binaire en complément à deux
égal à la valeur Integer. Les huit bits de poids fort de la valeur Integer sont codés sur les
bits 8 à 1 du premier octet, les huit bits suivants sur les bits 8 à 1 de l'octet suivant, et
ainsi de suite. Si les valeurs d'un type Integer sont limitées aux nombres négatifs et
naturels, le bit 8 du premier octet indique le signe de la valeur; si ces valeurs sont limitées
exclusivement aux nombres naturels, aucun bit de signe n'est nécessaire.

5.4.1.3 Valeur Unsigned

Une valeur Unsigned doit être codée comme suit:

a) Le composant octet d'identification ne doit pas être présent.
b) Le composant octet(s) de longueur ne doit pas être présent si la taille de la

valeur Unsigned est invariable. La longueur d'une valeur Unsigned de taille invariable
dépend de la plage spécifiée de la valeur. Le composant octet(s) de longueur doit être
présent si la taille de la valeur Unsigned est variable.

c) Le composant octet(s) de contenu doit correspondre à un nombre binaire égal à la
valeur Unsigned; il doit se composer des bits 8 à 1 du premier octet, suivis des bits 8 à 1
du deuxième octet, et ainsi de suite jusqu'au dernier octet du composant octet(s) de
contenu inclus.

5.4.1.4 Floating Point

Une valeur Floating Point doit être codée comme suit:

a) Le composant octet d'identification ne doit pas être présent.
b) Le composant octet(s) de longueur ne doit pas être présent.
c) Le composant octet(s) de contenu doit contenir des valeurs Floating Point définies

conformément à la CEI 60559. Le signe est codé au moyen du bit 8 du premier octet. Il
est suivi de l'exposant à partir du bit 7 du premier octet, puis de la mantisse à partir du
bit 7 du deuxième octet pour le type Floating32 ou du bit 4 du deuxième octet pour le
type Floating64.

5.4.1.5 BitString

Une valeur BitString doit être codée comme suit:

a) Le composant octet d'identification ne doit pas être présent.
b) Le composant octet(s) de longueur ne doit pas être présent si la taille de la

valeur BitString est invariable. Une chaîne binaire de taille invariable est créée par
l'application d'une contrainte de taille contenant une seule valeur au type BitString. Le
composant octet(s) de longueur doit être présent si la taille de la valeur BitString est
variable.

c) Le composant octet(s) de contenu comporte autant d'octets que nécessaire pour recevoir
l'ensemble des bits de la valeur réelle: N_octets = (N_Bits-1) div 8 + 1. La valeur BitString
qui commence par le premier bit et va jusqu'au dernier bit doit être placée sur les bits 8
à 1 du premier octet, suivis des bits 8 à 1 du deuxième octet, et ainsi de suite. Si le
nombre de bits n'est pas un multiple de 8, on trouve des bits non utilisés, qui sont situés
sur les bits de poids faible du dernier octet. La valeur des bits non utilisés peut être
zéro (0) ou un (1) et n'avoir aucune signification.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © CEI:2007 – 103 –

5.4.1.6 OctetString

Une valeur octetString doit être codée comme suit:

a) Le composant octet d'identification ne doit pas être présent.
b) Le composant octet(s) de longueur ne doit pas être présent si la taille de la

valeur octetString est invariable. Une chaîne d'octets de taille invariable est créée par
l'application d'une contrainte de taille contenant une seule valeur au type octetString. Le
composant octet(s) de longueur doit être présent si la taille de la valeur octetString est
variable.

c) La valeur du composant octet(s) de contenu doit être égale à celle des octets de la valeur
de donnée.

5.4.1.7 VisibleString

Une valeur VisibleString doit être codée comme suit:

a) Le composant octet d'identification ne doit pas être présent.
b) Le composant octet(s) de longueur ne doit pas être présent si la taille de la

valeur VisibleString est invariable. Une chaîne visible de taille invariable est créée par
l'application d'une contrainte de taille contenant une seule valeur au type VisibleString. Le
composant octet(s) de longueur doit être présent si la taille de la valeur VisibleString est
variable.

c) La valeur du composant octet(s) de contenu doit être égale à celle des octets de la valeur
de donnée.

5.4.1.8 UNICODEString (chaîne ISO 10646)

Une valeur UNICODEString doit être codée comme suit:

a) Le composant octet d'identification ne doit pas être présent.
b) Le composant octet(s) de longueur doit indiquer le nombre d'octets du composant octet(s)

de contenu sous la forme d'un nombre binaire.
c) Chaque caractère ISO 10646 doit être placé sur deux octets du composant octet(s) de

contenu, l'octet de poids fort étant placé sur le premier octet et l'octet de poids faible sur
l'octet suivant, et le bit de poids fort d'un octet de la valeur de donnée étant aligné avec le
bit de poids fort d'un octet du composant octet(s) de contenu.

5.4.1.9 BinaryTime

Une valeur BinaryTime doit être codée comme suit:

a) Le composant octet d'identification ne doit pas être présent.
b) Le composant octet(s) de longueur ne doit pas être présent.
c) Le composant octet(s) de contenu doit correspondre à un nombre binaire égal à la

valeur BinaryTime; il doit se composer des bits 8 à 1 du premier octet, suivis des bits 8
à 1 du deuxième octet, et ainsi de suite jusqu'au dernier octet du composant octet(s) de
contenu inclus.

5.4.1.10 BCD
a) Une valeur BCD doit être codée de la même manière qu'une valeur Unsigned8.
b) Une valeur BCD doit être placée sur les bits 4 à 1 de l'octet de contenu d'une

valeur Unsigned8. La valeur des bits 8 à 5 doit être zéro (0).

5.4.1.11 CompactBooleanArray

Une valeur CompactBooleanArray doit être codée de la même manière qu'une valeur BitString.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 104 – 61158-6-17 © CEI:2007

5.4.1.12 CompactBCDArray
a) Une valeur CompactBCDArray doit être codée de la même manière qu'un type primitif.
b) Le composant octet d'identification ne doit pas être présent.
c) Le composant octet(s) de longueur doit indiquer le nombre d'octets de la matrice sous la

forme d'un nombre binaire.
d) Si le nombre des valeurs BCD est zéro, aucun octet ne doit suivre et le composant octet(s)

de longueur doit être défini sur zéro.
e) La première valeur BCD doit être placée sous la forme d'un nombre binaire sur les bits 8

à 5 du premier composant octet(s) de contenu et la deuxième sur les bits 4 à 1 du
premier composant octet(s) de contenu. L'opération sera renouvelée pour les valeurs BCD
et les octets de contenu restants jusqu'au dernier octet de contenu inclus. La valeur des
éventuels bits non utilisés du dernier octet de contenu doit être définie sur 1.

5.4.1.13 SEQUENCE

Une valeur de type SEQUENCE doit être codée comme suit:

a) Le composant octet d'identification ne doit pas être présent.
b) Le composant octet(s) de longueur doit être présent et spécifier le nombre des

composants de premier niveau du composant octet(s) de contenu. Toutefois, cette
longueur ne doit pas être codée pour le premier mot-clé SEQUENCE de FalArPDU.

c) Le composant octet(s) de contenu doit comporter les codages de tous les types d'élément,
dans l'ordre dans lequel ils sont spécifiés dans la description ASN.1 du type SEQUENCE.

5.4.1.14 SEQUENCE OF

Une valeur de type SEQUENCE OF doit être codée comme suit:

a) Le composant octet d'identification ne doit pas être présent.
b) Le composant octet(s) de longueur doit être présent et spécifier le nombre des

composants de premier niveau du composant octet(s) de contenu.
c) Le composant octet(s) de contenu doit comporter les codages de tous les types d'élément,

dans l'ordre dans lequel ils sont spécifiés dans la description ASN.1 du type SEQUENCE
OF.

5.4.1.15 CHOICE

Une valeur de type CHOICE doit être codée comme suit:

a) Le composant octet d'identification ne doit pas être présent.
b) Le composant octet(s) de longueur ne doit pas être présent.
c) Le composant octet(s) de contenu doit comporter le codage du type choisi dans la liste

des types de remplacement.

5.4.1.16 NULL

Une valeur de type NULL doit être codée comme suit:

a) Le composant octet d'identification ne doit pas être présent.
b) Le composant octet(s) de longueur ne doit pas être présent.
c) Le composant octet(s) de contenu ne doit pas être présent.

5.4.1.17 Tagged

Une valeur de type Tagged doit être codée comme suit:

a) Le composant octet d'identification ne doit être présent que si le type Tagged fait partie
d'une liste de types de remplacement dans une construction CHOICE.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © CEI:2007 – 105 –

b) Le composant octet(s) de longueur ne doit pas être présent.
c) Le composant octet(s) de contenu doit comporter le codage du type étiqueté.

5.4.1.18 IMPLICIT

Une valeur de type IMPLICIT doit être codée comme suit:

a) Le composant octet d'identification ne doit pas être présent.
b) Le composant octet(s) de longueur ne doit pas être présent.
c) Le composant octet(s) de contenu doit comporter le codage du type référencé par la

construction IMPLICIT, sauf lorsque le type référencé est un type SEQUENCE. Dans ce
cas, le composant octet(s) de contenu se compose uniquement du composant octet(s) de
contenu du type SEQUENCE référencé et le composant octet(s) de longueur de ce
type SEQUENCE ne doit pas être présent.

5.4.1.19 OPTIONAL et DEFAULT

Une valeur de type OPTIONAL ou DEFAULT doit être codée comme suit:

a) Le composant octet d'identification ne doit pas être présent.
b) Le composant octet(s) de longueur doit être présent. Si aucune valeur de ce type n'est

présente, le composant octet(s) de longueur contient la valeur 0.
c) Le composant octet(s) de contenu doit comporter le codage du type référencé si une

valeur de ce type est présente; dans le cas contraire, aucun octet de contenu n'est
présent.

5.4.1.20 ANY

Le type ANY est utilisé pour définir des types complexes, dont la structure est décrite de
manière informelle plutôt que dans ASN.1.

Une valeur de type ANY doit être codée comme suit:

a) Le composant octet d'identification ne doit pas être présent.
b) Le composant octet(s) de longueur ne doit pas être présent.
c) Le composant octet(s) de contenu doit comporter le codage de tous les types IMPLICIT

constituant le type ANY.

6 Structure des diagrammes d'états de protocole de la couche FAL

Le présent paragraphe spécifie les machines de protocole de la couche FAL et l'interface qui
les sépare.

NOTE Les diagrammes d'états spécifiés dans le présent article et les machines ARPM définies dans les articles
suivants définissent uniquement les événements relatifs au protocole pour chacun. Le traitement des autres
événements s'effectue localement.

Le comportement de la couche FAL est décrit par trois machines de protocole intégrées. Les
trois types de machine de protocole sont les suivants: les machines de protocole de
service FAL (FSPM), les machines de protocole de relations d'applications (ARPM) et les
machines de protocole de mapping de la couche de liaison de données (Data-link layer
Mapping Protocol Machine, DMPM). Des machines de protocole spécifiques sont définies
pour les différents types d'AREP. Les relations et les primitives échangées entre ces
machines de protocole sont représentées à la Figure 6.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 106 – 61158-6-17 © CEI:2007

Figure 6 – Relations entre les machines de protocole et les couches adjacentes

La machine FSPM est chargée des activités suivantes:

a) accepter les primitives de service provenant de l'utilisateur de service FAL et les convertir
en primitives de couche FAL internes;

b) sélectionner un diagramme d'états ARPM approprié en fonction du paramètre
d'identificateur d'AREP fourni par l'entité AP-Context et envoyer les primitives de
couche FAL internes à la machine ARPM choisie;

c) accepter les primitives de couche FAL internes provenant de la machine ARPM et les
convertir en primitives de service à l'intention de l'entité AP-Context;

d) remettre les primitives de service FAL à l'entité AP-Context en fonction du paramètre
d'identificateur d'AREP associé aux primitives.

La machine ARPM est chargée des activités suivantes:

a) accepter les primitives de couche FAL internes provenant de la machine FSPM, et créer
et envoyer d'autres primitives de couche FAL internes soit à la machine FSPM, soit à la
machine DMPM, en fonction du type de primitive et d'AREP;

b) accepter les primitives de couche FAL internes provenant de la machine DMPM et les
envoyer à la machine FSPM sous une forme convertie à l'intention de la machine FSPM;

c) si les primitives concernent le service Establish (établissement) ou Abort (interruption),
elle doit essayer d'établir ou de libérer l'AR spécifiée.

La machine DMPM décrit le mapping entre la couche FAL et la couche DLL. Elle est
commune à tous les types d'AREP et ne présente pas de changements d'état. La
machine DMPM est chargée des activités suivantes:

a) accepter les primitives de couche FAL internes provenant de la machine ARPM, préparer
les primitives de service de couche DLL et les envoyer à la couche DLL;

b) recevoir les primitives d'indication ou de confirmation provenant de la couche DLL et les
envoyer à la machine ARPM sous une forme convertie à l'intention de la machine ARPM.

Machine

FSPM

Machine ARPM
n° 1

Machine ARPM
n° n

AP Cortext

Couche Liaison de données

Primitives de demande/réponse de
DL

Primitives d'indication/confirmation
de DL

Primitives d'indication/confirmation de
service FAL

Primitives de demande/réponse de
service FAL

Primitives de demande/réponse de
machine ARPM

Primitives d'indication/confirmation
de machine ARPM

Primitives de demande/réponse de
machine FSPM

Primitives d'indication/confirmation de
machine FSPM

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © CEI:2007 – 107 –

7 Diagramme d'états de contexte d'application

Aucun diagramme d'états de contexte d'application n'est défini pour ce protocole.

8 Machines de protocole de service FAL (FSPM)

8.1 Généralités

Les différentes machines de protocole de service FAL sont les suivantes:

• la machine de protocole d'élément ASE de variable (Variable ASE Protocol Machine,
VARM);

• la machine de protocole d'élément ASE d'événement (Event ASE Protocol Machine,
EVTM);

• la machine de protocole d'élément ASE de région de charge (Load Region ASE
Protocol Machine, LDRM);

• la machine de protocole d'élément ASE d'invocation de fonctions (Function Invocation
ASE Protocol Machine, FNIM);

• la machine de protocole d'élément ASE de temps (Time ASE Protocol Machine, TIMM);

• la machine de protocole d'élément ASE de gestion de réseau (Network Management
ASE Protocol Machine, NWMM).

8.2 Paramètres communs des primitives

De nombreux services possèdent les paramètres ci-dessous. Au lieu de les définir avec
chaque service, on établit les définitions communes ci-dessous.

AREP
Ce paramètre contient des informations suffisantes pour identifier l'AREP à utiliser pour
transmettre le service. Ce paramètre peut utiliser un attribut clé de l'AREP pour identifier la
relation d'applications. Lorsqu'un AREP prend en charge plusieurs contextes (établis à l'aide
du service Initiate (lancement)) en même temps, le paramètre AREP est étendu pour identifier
le contexte ainsi que l'AREP.

InvokeID
Ce paramètre identifie cette invocation du service. Il permet d'associer une demande de
service à la réponse correspondante. Deux invocations de services en cours ne peuvent donc
pas être identifiées par la même valeur InvokeID.

Error Info
Ce paramètre fournit des informations d'erreur pour les erreurs de service. Il est renvoyé dans
les primitives de service confirmé et les primitives de réponse.

8.3 Machine de protocole d'élément ASE de variable (VARM)

8.3.1 Définition des primitives

8.3.1.1 Primitives échangées

Le Tableau 3 répertorie les primitives de service échangées entre l'utilisateur FAL et la
machine VARM, avec les paramètres associés.

Tableau 3 – Primitives échangées entre l'utilisateur FAL et la machine VARM

Nom de la
primitive Source Paramètres associés Fonctions

Read.req Utilisateur FAL VariableSpecifier

Cette primitive permet de lire des valeurs au niveau
de variables distantes.

Write.req Utilisateur FAL VariableSpecifier Cette primitive permet d'écrire des valeurs au

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 108 – 61158-6-17 © CEI:2007

Nom de la
primitive Source Paramètres associés Fonctions

 niveau de variables distantes.
InfReport.req Utilisateur FAL VariableSpecifier,

Value,
RemoteArep

Cette primitive permet de publier des variables.

Read.rsp Utilisateur FAL VariableSpecifier,
Value,
ErrorInfo

Cette primitive permet de transmettre les valeurs de
variables demandées.

Write.rsp Utilisateur FAL VariableSpecifier,
ErrorInfo

Cette primitive permet de signaler le résultat de
l'écriture demandée.

Read.ind VARM VariableSpecifier Cette primitive permet de transmettre une demande
de lecture.

Write.ind VARM VariableSpecifier
Value

Cette primitive permet de transmettre une demande
d'écriture.

InfReport.ind VARM VariableSpecifier,
Value

Cette primitive permet de signaler les valeurs de
variables publiées.

Read.cnf VARM VariableSpecifier,
Value
ErrorInfo

Cette primitive permet de transmettre les valeurs de
variables demandées, ainsi que le résultat de la
lecture.

Write.cnf VARM VariableSpecifier,
ErrorInfo

Cette primitive permet de signaler le résultat de
l'écriture demandée.

8.3.1.2 Paramètres des primitives

Le Tableau 4 énumère les paramètres utilisés avec les primitives échangées entre
l'utilisateur FAL et la machine VARM.

Tableau 4 – Paramètres utilisés avec les primitives échangées
entre l'utilisateur FAL et la machine VARM

Nom du paramètre Description
VariableSpecifier Ce paramètre spécifie une variable ou une liste de variables.
RemoteArep Ce paramètre spécifie un AREP distant auquel l'unité APDU doit être transférée.
Value Ce paramètre contient la valeur de variable à lire/écrire.
ErrorInfo Ce paramètre fournit des informations d'erreur pour les erreurs de service.

8.3.2 Diagramme d'états

8.3.2.1 Généralités

Le diagramme d'états de la machine VARM dispose d'un seul état possible: ACTIVE (actif).

Figure 7 – Diagramme de passages d'état de la machine VARM

8.3.2.2 Tables d'états

La Figure 7, le Tableau 5 et le Tableau 6 décrivent le diagramme d'états de la machine VARM.

Tableau 5 – Table d'états de la machine VARM: passages expéditeur

N° État actuel
Événement ou condition

=> action
État suivant

S1 ACTIVE Read.req
=>

ArepID := GetArep(VariableSpecifier)
SelectArep(ArepID, “PTC-AR”),

ACTIVE

ACTIVE Tous les passages

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © CEI:2007 – 109 –

N° État actuel
Événement ou condition

=> action
État suivant

CS_req{
user_data := Read-RequestPDU

}
S2 ACTIVE Write.req

=>
ArepID := GetArep(VariableSpecifier)
SelectArep(ArepID, “PTC-AR”),
CS_req{

user_data := Write-RequestPDU
}

ACTIVE

S3 ACTIVE InfReport.req
=>

SelectArep(RemoteArep, “MSU-AR”),
UCS_req{

user_data := InformationReport-RequestPDU
}

ACTIVE

S4 ACTIVE Read.rsp
=>

SelectArep(ArepID, “PTC-AR”),
CS_rsp{

user_data := Read-ResponsePDU
}

ACTIVE

S5 ACTIVE Write.rsp
=>

SelectArep(ArepID, “PTC-AR”),
CS_rsp{

user_data := Write-ResponsePDU
}

ACTIVE

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 110 – 61158-6-17 © CEI:2007

Tableau 6 – Table d'états de la machine VARM: passages destinataire

N° État actuel
Événement ou condition

=> action
État suivant

R1 ACTIVE CS_ind
&& PDU_Type = Read_RequestPDU
=>

Read.ind{
ArepID := arep_id
Data := user_data

}

ACTIVE

R2 ACTIVE CS_ind
&& PDU_Type = Write_RequestPDU
=>

Write.ind{
ArepID := arep_id
Data := user_data,

}

ACTIVE

R3 ACTIVE CS_ind
&& PDU_Type = Read_ResponsePDU
&& GetErrorInfo() = “success”
=>

Read.cnf(+){
Data := user_data

}

ACTIVE

R4 ACTIVE CS_ind
&& PDU_Type = Read_ResponsePDU
&& GetErrorInfo() <> “success”
=>

Read.cnf(-){
ErrorInfo := GetErrorInfo()

}

ACTIVE

R5 ACTIVE CS_ind
&& PDU_Type =Write_ResponsePDU
&& GetErrorInfo() = “success”
=>

Write.cnf(+){
Data := user_data

}

ACTIVE

R6 ACTIVE CS_ind
&& PDU_Type = Write_ResponsePDU
&& GetErrorInfo() <> “success”
=>

Write.cnf(-){
ErrorInfo := GetErrorInfo()

}

ACTIVE

R7 ACTIVE UCS_ind
&& PDU_Type = InformationReport-RequestPDU
=>

InfReport.ind{
Data := user_data

}

ACTIVE

R8 ACTIVE CS_cnf
&& Status = “success”
=>

 (aucune action)

ACTIVE

R9 ACTIVE CS_cnf
&& Status <> “success”
&& GetService(InvokeID) = “Read”
=>

Read.cnf(-){
ErrorInfo := Status

}

ACTIVE

R10 ACTIVE CS_cnf
&& Status <> “success”
&& GetService(InvokeID) = “Write”
=>

Write.cnf(-){
ErrorInfo := Status

}

ACTIVE

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © CEI:2007 – 111 –

8.3.2.3 Fonctions

Le Tableau 7 énumère les fonctions utilisées par la machine VARM, ainsi que les arguments
et les descriptions correspondants.

Tableau 7 – Fonctions utilisées par la machine VARM

Nom de la fonction Paramètre Description
SelectArep ArepID,

ARtype
Recherche l'entrée AREP spécifiée par ArepID and ARtype

GetArep VariableSpecifier Recherche ArepID en fonction de la valeur VariableSpecifier
spécifiée

GetErrorInfo Obtient des informations d'erreur de l'unité APDU
GetService InvokeID Obtient le nom de service de InvokeID

8.4 Machine de protocole d'élément ASE d'événement (EVTM)

8.4.1 Définition des primitives

8.4.1.1 Primitives échangées

Le Tableau 8 répertorie les primitives de service échangées entre l'utilisateur FAL et la
machine EVTM, avec les paramètres associés.

Tableau 8 – Primitives échangées entre l'utilisateur FAL et la machine EVTM

Nom de la
primitive

Source Paramètres associés Fonctions

Notification.req Utilisateur FAL AREP
NotifierID
Sequence Number
ListOfEventMessages

Cette primitive permet de demander la
publication de messages d'événement.

EventRecovery.req Utilisateur FAL AREP
NotifierID
SequenceNumber

Cette primitive permet de demander la
retransmission de la notification d'événement.

Notification.ind EVTM AREP
NotifierID
SequenceNumber
List of Event Messages

Cette primitive permet d'informer la
notification d'événement.

EventRecovery.ind EVTM AREP
NotifierID
SequenceNumber

Cette primitive permet d'informer la demande
de retransmission de la notification
d'événement.

8.4.1.2 Paramètres des primitives
Le Tableau 9 énumère les paramètres utilisés avec les primitives échangées entre l'utilisateur FAL
et la machine EVTM.

Tableau 9 – Paramètres utilisés avec les primitives échangées
entre l'utilisateur FAL et la machine EVTM

Nom du paramètre Description
NotifierID Ce paramètre conditionnel identifie le notificateur à l'origine de la notification

d'événement. Il est présent si plusieurs notificateurs sont définis pour l'AP.
SequenceNumber Ce paramètre facultatif correspond au numéro de séquence de la notification

d'événement. Il peut être utilisé dans le cadre de la récupération de notification.
NotificationTime Ce paramètre facultatif correspond à l'heure de la notification d'événement.
ListOfEventMessages Ce paramètre contient la liste des messages d'événement à signaler. Il peut contenir

des messages provenant d'un ou de plusieurs objets d'événement, chaque objet
contenant le même jeu de paramètres.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 112 – 61158-6-17 © CEI:2007

8.4.2 Diagramme d'états

8.4.2.1 Généralités

Le diagramme d'états de la machine EVTM dispose d'un seul état possible: ACTIVE (actif).

Figure 8 – Diagramme de passages d'état de la machine EVTM

8.4.2.2 Tables d'états

La Figure 8, le Tableau 10 et le Tableau 11 décrivent le diagramme d'états de la
machine EVTM.

Tableau 10 – Table d'états de la machine EVTM: passages expéditeur

N° Etat actuel
Evénement ou condition

=> action
Etat suivant

S1 ACTIVE Notification.req
=>

SelectArep(RemoteArep, “MTU-AR”),
UCS_req{

user_data := Event-NotificationPDU
}

ACTIVE

S2 ACTIVE EventRecovery.req
=>

SelectArep(RemoteArep, “PTU-AR”),
UCS_req{

arep := SelectArep(CalledAREP, “PTU-AR”),
user_data := EventRecovery-RequestPDU

}

ACTIVE

Tableau 11 – Table d'états de la machine EVTM: passages destinataire

N° Etat actuel
Evénement ou condition

=> action
Etat suivant

R1 ACTIVE UCS_ind
&& PDU_Type = Event_NotifiationPDU
=>

Notification.ind{
Data := user_data

}

ACTIVE

R2 ACTIVE UCS_ind
&& PDU_Type = EventRecovery-RequestPDU
=>

EventRecovery.ind {
Data := user_data

}

ACTIVE

8.4.2.3 Fonctions

Le Tableau 12 présente la fonction utilisée par la machine EVTM, ainsi que les arguments et
la description correspondante.

ACTIVE Tous les passages

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © CEI:2007 – 113 –

Tableau 12 – Fonction utilisée par la machine EVTM

Nom de la fonction Paramètre Description
SelectArep ArepID,

ARtype
Recherche l'entrée AREP spécifiée par ArepID and ARtype

8.5 Machine de protocole d'élément ASE de région de charge (LDRM)

8.5.1 Définition des primitives

8.5.1.1 Primitives échangées

Le Tableau 13 répertorie les primitives de service échangées entre l'utilisateur FAL et la
machine LDRM, avec les paramètres associés.

Tableau 13 – Primitives échangées entre l'utilisateur FAL et la machine LDRM

Nom de la
primitive Source Paramètres associés Fonctions

Download.req Utilisateur FAL AREP
InvokeID
LoadRegion
LoadData

Cette primitive permet de demander à ce que des
données soient téléchargées dans la région.

Upload.req Utilisateur FAL AREP
InvokeID
LoadRegion

Cette primitive permet de demander à ce que des
données soient chargées depuis la région.

Download.rsp Utilisateur FAL AREP
InvokeID
Error Info

Cette primitive permet de signaler le résultat du
téléchargement demandé.

Upload.rsp Utilisateur FAL AREP
InvokeID
LoadData
ErrorInfo

Cette primitive permet de transmettre les données à
charger.

Download.ind LDRM AREP
InvokeID
LoadRegion
LoadData

Cette primitive permet de transmettre les données
téléchargées.

Upload.ind LDRM AREP
InvokeID
Load region

Cette primitive permet de transmettre une demande
de chargement.

Download.cnf LDRM AREP
InvokeID
ErrorInfo

Cette primitive permet de transmettre un résultat de
téléchargement.

Upload.cnf LDRM AREP
InvokeID
LoadData
ErrorInfo

Cette primitive permet de transmettre les données
chargées.

8.5.1.2 Paramètres des primitives

Le Tableau 14 énumère les paramètres utilisés avec les primitives échangées entre
l'utilisateur FAL et la machine LDRM.

Tableau 14 – Paramètres utilisés avec les primitives échangées entre
l'utilisateur FAL et la machine LDRM

Nom du paramètre Description
LoadRegion Ce paramètre spécifie la région à partir de laquelle ou vers laquelle l'image doit être

chargée.
LoadData Ce paramètre contient les données à charger.
ErrorInfo Ce paramètre fournit des informations d'erreur pour les erreurs de service.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 114 – 61158-6-17 © CEI:2007

8.5.2 Diagramme d'états

8.5.2.1 Généralités

Le diagramme d'états de la machine LDRM dispose d'un seul état possible: ACTIVE (actif).

Figure 9 – Diagramme de passages d'état de la machine LDRM

8.5.2.2 Tables d'états

La Figure 9, le Tableau 15 et le Tableau 16 décrivent le diagramme d'états de la
machine LDRM.

Tableau 15 – Table d'états de la machine LDRM: passages expéditeur

N° État actuel
Événement ou condition

=> action
État suivant

S1 ACTIVE Download.req
=>

SelectArep(RemoteArep, “PTC-AR”),
CS_req{

user_data := DownLoad-RequestPDU
}

ACTIVE

S2 ACTIVE Upload.req
=>

SelectArep(RemoteArep, “PTC-AR”),
CS_req{

user_data := UpLoad-RequestPDU
}

ACTIVE

S3 ACTIVE Download.rsp
=>

SelectArep(ArepID, “PTC-AR”),
CS_rsp{

arep := SelectArep(CallingAREP, “PTC-AR”),
user_data := DownLoad-ResponsePDU

}

ACTIVE

S4 ACTIVE Upload.rsp
=>

SelectArep(ArepID, “PTC-AR”),
CS_rsp{

arep := SelectArep(CallingAREP, “PTC-AR”),
user_data := UpLoad-ResponsePDU

}

ACTIVE

ACTIVE Tous les passages

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

61158-6-17 © CEI:2007 – 115 –

Tableau 16 – Table d'états de la machine LDRM: passages destinataire

N° État actuel
Événement ou condition

=> action
État suivant

R1 ACTIVE CS_ind
&& PDU_Type = DownLoad-RequestPDU
=>

Download.ind {
ArepID := arep_id
Data := user_data

}

ACTIVE

R2 ACTIVE CS_ind
&& PDU_Type = UpLoad-RequestPDU
=>

Upload.ind {
ArepID := arep_id
Data := user_data

}

ACTIVE

R3 ACTIVE CS_ind
&& PDU_Type = DownLoad-ResponsePDU
=>

Download.cnf(+) {
Data := user_data

}

ACTIVE

R4 ACTIVE CS_ind
&& PDU_Type = UpLoad-ResponsePDU
=>

Upload.cnf(+) {
Data := user_data

}

ACTIVE

R5 ACTIVE CS_cnf
&& Status <> “success”
&& GetService(InvokeID) = “Download”
=>

Download.cnf(-) {
ErrorInfo := Status

}

ACTIVE

R6 ACTIVE CS_cnf
&& Status <> “success”
&& GetService(InvokeID) = “Upload”
=>

Upload.cnf(-) {
ErrorInfo := Status

}

ACTIVE

8.5.2.3 Fonctions

Le Tableau 17 énumère les fonctions utilisées par la machine LDRM, ainsi que les arguments
et les descriptions correspondants.

Tableau 17 – Fonctions utilisées par la machine LDRM

Nom de la fonction Paramètre Description
SelectArep ArepID,

ARtype
Recherche l'entrée AREP spécifiée par ArepID and ARtype

GetErrorInfo Obtient des informations d'erreur de l'unité APDU
GetService InvokeID Obtient le nom de service de InvokeID

8.6 Machine de protocole d'élément ASE d'invocation de fonctions (FNIM)

8.6.1 Définition des primitives

8.6.1.1 Primitives échangées

Le Tableau 18 répertorie les primitives de service échangées entre l'utilisateur FAL et la
machine FNIM, avec les paramètres associés.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

 – 116 – 61158-6-17 © CEI:2007

Tableau 18 – Primitives échangées entre l'utilisateur FAL et la machine FNIM

Nom de la
primitive Source Paramètres associés Fonctions

Start.req Utilisateur FAL AREP
InvokeID
FunctionID

Cette primitive permet de demander le démarrage
de la fonction.

Stop.req Utilisateur FAL AREP
InvokeID
FunctionID

Cette primitive permet de demander l'arrêt de la
fonction.

Resume.req Utilisateur FAL AREP
InvokeID
FunctionID

Cette primitive permet de demander la reprise de la
fonction.

Start.rsp Utilisateur FAL AREP
InvokeID
Error Info

Cette primitive permet de signaler le résultat du
démarrage demandé.

Stop.rsp Utilisateur FAL AREP
InvokeID
Error Info

Cette primitive permet de signaler le résultat de
l'arrêt demandé.

Resume.rsp Utilisateur FAL AREP
InvokeID
Error Info

Cette primitive permet de signaler le résultat de la
reprise demandée.

Start.ind FNIM AREP
InvokeID
FunctionID

Cette primitive permet de transmettre une demande
de démarrage.

Stop.ind FNIM AREP
InvokeID
FunctionID

Cette primitive permet de transmettre une demande
d'arrêt.

Resume.ind FNIM AREP
InvokeID
FunctionID

Cette primitive permet de transmettre une demande
de reprise.

Start.cnf FNIM AREP
InvokeID
Error Info

Cette primitive permet de transmettre un résultat de
démarrage.

Stop.cnf FNIM AREP
InvokeID
Error Info

Cette primitive permet de transmettre un résultat
d'arrêt.

Resume.cnf FNIM AREP
InvokeID
Error Info

Cette primitive permet de transmettre un résultat de
reprise.

8.6.1.2 Paramètres des primitives

Le Tableau 19 présente le paramètre utilisé avec les primitives échangées entre
l'utilisateur FAL et la machine FNIM.

Tableau 19 – Paramètres utilisés avec les primitives échangées
entre l'utilisateur FAL et la machine FNIM

Nom du paramètre Description
FunctionID Ce paramètre spécifie un des attributs clés de l'objet d'invocation de fonctions

8.6.2 Diagramme d'états

8.6.2.1 Généralités

Le diagramme d'états de la machine FNIM dispose d'un seul état possible: ACTIVE (actif).

Figure 10 – Diagramme de passages d'état de la machine FNIM

ACTIVE Tous les passages

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

15
8-6

-17
:20

07

https://iecnorm.com/api/?name=4c3ddc9ef5b514020d93b0266fc3cb58

	English
	CONTENTS
	FOREWORD
	INTRODUCTION
	1 Scope
	1.1 General
	1.2 Specifications
	1.3 Conformance

	2 Normative reference
	3 Definitions
	3.1 Terms and definitions
	3.2 Abbreviations and symbols
	3.3 Conventions

	4 Abstract syntax description
	4.1 FAL PDU abstract syntax
	4.2 Abstract syntax of PDU body
	4.3 PDUs for ASEs
	4.4 Type definitions
	4.5 Data types

	5 Transfer syntax
	5.1 Overview of encoding
	5.2 APDU header encoding
	5.3 APDU body encoding
	5.4 Data type encoding rules

	6 FAL protocol state machines structure
	7 AP-context state machine
	8 FAL service protocol machines (FSPMs)
	8.1 General
	8.2 Common parameters of the primitives
	8.3 Variable ASE protocol machine (VARM)
	8.4 Event ASE protocol machine (EVTM)
	8.5 Load region ASE protocol machine (LDRM)
	8.6 Function invocation ASE protocol machine (FNIM)
	8.7 Time ASE protocol machine (TIMM)
	8.8 Network management ASE protocol machine (NWMM)

	9 Application relationship protocol machines (ARPMs)
	9.1 General
	9.2 Primitive definitions
	9.3 State machine
	9.4 Functions

	10 DLL mapping protocol machine (DMPM)
	10.1 General
	10.2 Primitive definitions
	10.3 DMPM state machine

	Bibliography
	Figures
	Figure 1 – APDU overview
	Figure 2 – Type field
	Figure 3 – Identifier octet
	Figure 4 – Length octet (one-octet format)
	Figure 5 – Length octets (three-octet format)
	Figure 6 – Relationships among protocol machines and adjacent layers
	Figure 7 – State transition diagram of VARM
	Figure 8 – State transition diagram of EVTM
	Figure 9 – State transition diagram of LDRM
	Figure 10 – State transition diagram of FNIM
	Figure 11 – State transition diagram of TIMM
	Figure 12 – State transition diagram of NWMM
	Figure 13 – State transition diagram of the PTC-ARPM
	Figure 14 – State transition diagram of the PTU-ARPM
	Figure 15 – State transition diagram of the PSU-ARPM
	Figure 16 – State transition diagram of the MTU-ARPM
	Figure 17 – State transition diagram of the MSU-ARPM
	Figure 18 – State transition diagram of DMPM

	Tables
	Table 1 – Conventions used for AE state machine definitions
	Table 2 – Encoding of FalArHeader field
	Table 3 – Primitives exchanged between FAL user and VARM
	Table 4 – Parameters used with primitives exchanged FAL user and VARM
	Table 5 – VARM state table – Sender transitions
	Table 6 – VARM state table – Receiver transitions
	Table 7 – Functions used by the VARM
	Table 8 – Primitives exchanged between FAL user and EVTM
	Table 9 – Parameters used with primitives exchanged FAL user and EVTM
	Table 10 – EVTM state table – Sender transitions
	Table 11 – EVTM state table – Receiver transitions
	Table 12 – Functions used by the EVTM
	Table 13 – Primitives exchanged between FAL user and LDRM
	Table 14 – Parameters used with primitives exchanged FAL user and LDRM
	Table 15 – LDRM state table – Sender transitions
	Table 16 – LDRM state table – Receiver transitions
	Table 17 – Functions used by the LDRM
	Table 18 – Primitives exchanged between FAL user and FNIM
	Table 19 – Parameters used with primitives exchanged FAL user and FNIM
	Table 20 – FNIM state table – Sender transitions
	Table 21 – FNIM state table – Receiver transitions
	Table 22 – Functions used by the FNIM
	Table 23 – Primitives exchanged between FAL user and TIMM
	Table 24 – Parameters used with primitives exchanged FAL user and TIMM
	Table 25 – TIMM states
	Table 26 – TIMM state table – Sender transitions
	Table 27 – TIMM state table – Receiver transitions
	Table 28 – Functions used by the TIMM
	Table 29 – Primitives exchanged between FAL user and NWMM
	Table 30 – Parameters used with primitives exchanged FAL user and NWMM
	Table 31 – NWMM states
	Table 32 – NWMM state table – Sender transitions
	Table 33 – NWMM state table – Receiver transitions
	Table 34 – Functions used by the NWMM
	Table 35 – Primitives exchanged between FSPM and ARPM
	Table 36 – Parameters used with primitives exchanged FSPM user and ARPM
	Table 37 – PTC-ARPM states
	Table 38 – PTC-ARPM state table – Sender transitions
	Table 39 – PTC-ARPM state table – Receiver transitions
	Table 40 – PTU-ARPM states
	Table 41 – PTU-ARPM state table – Sender transitions
	Table 42 – PTU-ARPM state table – Receiver transitions
	Table 43 – PSU-ARPM states
	Table 44 – PSU-ARPM state table – Sender transitions
	Table 45 – PSU-ARPM state table – Receiver transitions
	Table 46 – MTU-ARPM states
	Table 47 – MTU-ARPM state table – Sender transitions
	Table 48 – MTU-ARPM state table – Receiver transitions
	Table 49 – MSU-ARPM states
	Table 50 – MSU-ARPM state table – Sender transitions
	Table 51 – MSU-ARPM state table – Receiver transitions
	Table 52 – Functions used by the ARPMs
	Table 53 – Primitives exchanged between DMPM and ARPM
	Table 54 – Primitives exchanged between data-link layer and DMPM
	Table 55 – DMPM states
	Table 56 – DMPM state table – Sender transitions
	Table 57 – DMPM state table – Receiver transitions
	Table 58 – Functions used by the DMPM

	Français
	SOMMAIRE
	AVANT-PROPOS
	INTRODUCTION
	1 Domaine d'application
	1.1 Généralités
	1.2 Spécifications
	1.3 Conformité

	2 Références normatives
	3 Définitions
	3.1 Termes et définitions
	3.2 Abréviations et symboles
	3.3 Conventions

	4 Description de la syntaxe abstraite
	4.1 Syntaxe abstraite des unités PDU de couche FAL
	4.2 Syntaxe abstraite du corps des unités PDU
	4.3 Unités PDU destinées aux éléments ASE
	4.4 Définition des types
	4.5 Types de données

	5 Syntaxe de transfert
	5.1 Vue d'ensemble du codage
	5.2 Codage de l'en-tête des unités APDU
	5.3 Codage du corps des unités APDU
	5.4 Règles de codage des types de données

	6 Structure des diagrammes d'états de protocole de la couche FAL
	7 Diagramme d'états de contexte d'application
	8 Machines de protocole de service FAL (FSPM)
	8.1 Généralités
	8.2 Paramètres communs des primitives
	8.3 Machine de protocole d'élément ASE de variable (VARM)
	8.4 Machine de protocole d'élément ASE d'événement (EVTM)
	8.5 Machine de protocole d'élément ASE de région de charge (LDRM)
	8.6 Machine de protocole d'élément ASE d'invocation de fonctions (FNIM)
	8.7 Machine de protocole d'élément ASE de temps (TIMM)
	8.8 Machine de protocole d'élément ASE de gestion de réseau (NWMM)

	9 Machines de protocole de relations d'applications (ARPM)
	9.1 Généralités
	9.2 Définition des primitives
	9.3 Diagramme d'états
	9.4 Fonctions

	10 Machine de protocole de mapping de la couche de liaison de données (DMPM)
	10.1 Généralités
	10.2 Définition des primitives
	10.3 Diagramme d'états de la machine DMPM

	Bibliographie
	Figures
	Figure 1 – Vue d'ensemble d'une unité APDU
	Figure 2 – Champ Type
	Figure 3 – Composant octet d'identification
	Figure 4 – Octet de longueur (format à un octet)
	Figure 5 – Octets de longueur (format à trois octets)
	Figure 6 – Relations entre les machines de protocole et les couches adjacentes
	Figure 7 – Diagramme de passages d'état de la machine VARM
	Figure 8 – Diagramme de passages d'état de la machine EVTM
	Figure 9 – Diagramme de passages d'état de la machine LDRM
	Figure 10 – Diagramme de passages d'état de la machine FNIM
	Figure 11 – Diagramme de passages d'état de la machine TIMM
	Figure 12 – Diagramme de passages d'état de la machine NWMM
	Figure 13 – Diagramme de passages d'état de la machine PTC-ARPM
	Figure 14 – Diagramme de passages d'état de la machine PTU-ARPM
	Figure 15 – Diagramme de passages d'état de la machine PSU-ARPM
	Figure 16 – Diagramme de passages d'état de la machine MTU-ARPM
	Figure 17 – Diagramme de passages d'état de la machine MSU-ARPM
	Figure 18 – Diagramme de passages d'état de la machine DMPM

	Tableaux
	Tableau 1 – Conventions utilisées pour les définitions de diagramme d'états d'entité AE
	Tableau 2 – Codage du champ FalArHeader
	Tableau 3 – Primitives échangées entre l'utilisateur FAL et la machine VARM
	Tableau 4 – Paramètres utilisés avec les primitives échangées entre l'utilisateur FAL et la machine VARM
	Tableau 5 – Table d'états de la machine VARM: passages expéditeur
	Tableau 6 – Table d'états de la machine VARM: passages destinataire
	Tableau 7 – Fonctions utilisées par la machine VARM
	Tableau 8 – Primitives échangées entre l'utilisateur FAL et la machine EVTM
	Tableau 9 – Paramètres utilisés avec les primitives échangées entre l'utilisateur FAL et la machine EVTM
	Tableau 10 – Table d'états de la machine EVTM: passages expéditeur
	Tableau 11 – Table d'états de la machine EVTM: passages destinataire
	Tableau 12 – Fonction utilisée par la machine EVTM
	Tableau 13 – Primitives échangées entre l'utilisateur FAL et la machine LDRM
	Tableau 14 – Paramètres utilisés avec les primitives échangées entre l'utilisateur FAL et la machine LDRM
	Tableau 15 – Table d'états de la machine LDRM: passages expéditeur
	Tableau 16 – Table d'états de la machine LDRM: passages destinataire
	Tableau 17 – Fonctions utilisées par la machine LDRM
	Tableau 18 – Primitives échangées entre l'utilisateur FAL et la machine FNIM
	Tableau 19 – Paramètres utilisés avec les primitives échangées entre l'utilisateur FAL et la machine FNIM
	Tableau 20 – Table d'états de la machine FNIM: passages expéditeur
	Tableau 21 – Table d'états de la machine FNIM: passages destinataire
	Tableau 22 – Fonctions utilisées par la machine FNIM
	Tableau 23 – Primitives échangées entre l'utilisateur FAL et la machine TIMM
	Tableau 24 – Paramètres utilisés avec les primitives échangées entre l'utilisateur FAL et la machine TIMM
	Tableau 25 – Etats de la machine TIMM
	Tableau 26 – Table d'états de la machine TIMM: passages expéditeur
	Tableau 27 – Table d'états de la machine TIMM: passages destinataire
	Tableau 28 – Fonctions utilisées par la machine TIMM
	Tableau 29 – Primitives échangées entre l'utilisateur FAL et la machine NWMM
	Tableau 30 – Paramètres utilisés avec les primitives échangéesentre l'utilisateur FAL et la machine NWMM
	Tableau 31 – Etats de la machine NWMM
	Tableau 32 – Table d'états de la machine NWMM: passages expéditeur
	Tableau 33 – Table d'états de la machine NWMM: passages destinataire
	Tableau 34 – Fonctions utilisées par la machine NWMM
	Tableau 35 – Primitives échangées entre la machine FSPM et la machine ARPM
	Tableau 36 – Paramètres utilisés avec les primitives échangées entre l'utilisateur FSPM et la machine ARPM
	Tableau 37 – Etats de la machine PTC-ARPM
	Tableau 38 – Table d'états de la machine PTC-ARPM: passages expéditeur
	Tableau 39 – Table d'états de la machine PTC-ARPM: passages destinataire
	Tableau 40 – Etats de la machine PTU-ARPM
	Tableau 41 – Table d'états de la machine PTU-ARPM: passages expéditeur
	Tableau 42 – Table d'états de la machine PTU-ARPM: passages destinataire
	Tableau 43 – Etats de la machine PSU-ARPM
	Tableau 44 – Table d'états de la machine PSU-ARPM: passages expéditeur
	Tableau 45 – Table d'états de la machine PSU-ARPM: passages destinataire
	Tableau 46 – États de la machine MTU-ARPM
	Tableau 47 – Table d'états de la machine MTU-ARPM: passages expéditeur
	Tableau 48 – Table d'états de la machine MTU-ARPM: passages destinataire
	Tableau 49 – États de la machine MSU-ARPM
	Tableau 50 – Table d'états de la machine MSU-ARPM: passages expéditeur
	Tableau 51 – Table d'états de la machine MSU-ARPM: passages destinataire
	Tableau 52 – Fonctions utilisées par la machine ARPM
	Tableau 53 – Primitives échangées entre la machine DMPM et la machine ARPM
	Tableau 54 – Primitives échangées entre la couche de liaison de données et la machine DMPM
	Tableau 55 – Etats de la machine DMPM
	Tableau 56 – Table d'états de la machine DMPM: passages expéditeur
	Tableau 57 – Table d'états de la machine DMPM: passages destinataire
	Tableau 58 – Fonctions utilisées par la machine DMPM

